圆盘嵌入定理的背景

Stefan Behrens, Mark Powell, Arunima Ray
{"title":"圆盘嵌入定理的背景","authors":"Stefan Behrens, Mark Powell, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0001","DOIUrl":null,"url":null,"abstract":"‘Context for the Disc Embedding Theorem’ explains why the theorem is the central result in the study of topological 4-manifolds. After recalling surgery theory and the proof of the s-cobordism theorem for high-dimensional manifolds, the chapter explains what goes wrong when trying to apply the same techniques in four dimensions and how to start overcoming these problems. The complete statement of the disc embedding theorem is provided. Finally the most important consequences to manifold theory are listed, including a proof of why Alexander polynomial one knots are topologically slice and the existence of exotic smooth structures on 4-dimensional Euclidean space.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context for the Disc Embedding Theorem\",\"authors\":\"Stefan Behrens, Mark Powell, Arunima Ray\",\"doi\":\"10.1093/oso/9780198841319.003.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘Context for the Disc Embedding Theorem’ explains why the theorem is the central result in the study of topological 4-manifolds. After recalling surgery theory and the proof of the s-cobordism theorem for high-dimensional manifolds, the chapter explains what goes wrong when trying to apply the same techniques in four dimensions and how to start overcoming these problems. The complete statement of the disc embedding theorem is provided. Finally the most important consequences to manifold theory are listed, including a proof of why Alexander polynomial one knots are topologically slice and the existence of exotic smooth structures on 4-dimensional Euclidean space.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“圆盘嵌入定理的背景”解释了为什么该定理是拓扑4流形研究的中心结果。在回顾了高维流形的外科理论和s协定理的证明之后,本章解释了在尝试将相同的技术应用于四维时出现的错误以及如何开始克服这些问题。给出了圆盘嵌入定理的完整表述。最后列举了流形理论最重要的结果,包括Alexander多项式1节为何是拓扑切片的证明和四维欧几里德空间上奇异光滑结构的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context for the Disc Embedding Theorem
‘Context for the Disc Embedding Theorem’ explains why the theorem is the central result in the study of topological 4-manifolds. After recalling surgery theory and the proof of the s-cobordism theorem for high-dimensional manifolds, the chapter explains what goes wrong when trying to apply the same techniques in four dimensions and how to start overcoming these problems. The complete statement of the disc embedding theorem is provided. Finally the most important consequences to manifold theory are listed, including a proof of why Alexander polynomial one knots are topologically slice and the existence of exotic smooth structures on 4-dimensional Euclidean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信