基于卷积神经网络的视网膜图像亮斑检测

J. Pavlovičová, S. Kajan, Martin Marko, M. Oravec, V. Kurilová
{"title":"基于卷积神经网络的视网膜图像亮斑检测","authors":"J. Pavlovičová, S. Kajan, Martin Marko, M. Oravec, V. Kurilová","doi":"10.23919/ELMAR.2018.8534658","DOIUrl":null,"url":null,"abstract":"This paper is focused on automatic detection and classification of diabetic retinopathy symptoms, more specifically on the bright lesions (soft and hard exudates) as one of the primary signs suitable for diabetic retinopathy screening. We use a convolutional neural network (CNN) for bright lesions detection and evaluate achieved results using criterion based on proper comparison of each lesion with ground truth images scored by the ophthalmologist. As input data we use original and geometrically transformed retinal images from Messidor database divided into smaller blocks. In that way we enlarge the training dataset and increase classification accuracy.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bright Lesions Detection on Retinal Images by Convolutional Neural Network\",\"authors\":\"J. Pavlovičová, S. Kajan, Martin Marko, M. Oravec, V. Kurilová\",\"doi\":\"10.23919/ELMAR.2018.8534658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on automatic detection and classification of diabetic retinopathy symptoms, more specifically on the bright lesions (soft and hard exudates) as one of the primary signs suitable for diabetic retinopathy screening. We use a convolutional neural network (CNN) for bright lesions detection and evaluate achieved results using criterion based on proper comparison of each lesion with ground truth images scored by the ophthalmologist. As input data we use original and geometrically transformed retinal images from Messidor database divided into smaller blocks. In that way we enlarge the training dataset and increase classification accuracy.\",\"PeriodicalId\":175742,\"journal\":{\"name\":\"2018 International Symposium ELMAR\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELMAR.2018.8534658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文主要研究糖尿病视网膜病变症状的自动检测与分类,更具体地说,明亮病变(软硬渗出物)是适合糖尿病视网膜病变筛查的主要征象之一。我们使用卷积神经网络(CNN)进行明亮病变检测,并使用基于每个病变与眼科医生评分的真实图像进行适当比较的标准来评估取得的结果。作为输入数据,我们使用原始的和几何变换的视网膜图像从Messidor数据库分成更小的块。通过这种方式,我们扩大了训练数据集,提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bright Lesions Detection on Retinal Images by Convolutional Neural Network
This paper is focused on automatic detection and classification of diabetic retinopathy symptoms, more specifically on the bright lesions (soft and hard exudates) as one of the primary signs suitable for diabetic retinopathy screening. We use a convolutional neural network (CNN) for bright lesions detection and evaluate achieved results using criterion based on proper comparison of each lesion with ground truth images scored by the ophthalmologist. As input data we use original and geometrically transformed retinal images from Messidor database divided into smaller blocks. In that way we enlarge the training dataset and increase classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信