缠结引理

R. Schwartz
{"title":"缠结引理","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.24","DOIUrl":null,"url":null,"abstract":"This chapter gives a proof of the Intertwining Lemma. Section 20.2 lists out the formulas for all the maps involved. Section 20.3 recalls the definition of Z* and proves Statement 3 of the Intertwining Lemma. Section 20.4 proves statements 1 and 2 of the Intertwining Lemma for a single point. Section 20.5 decomposes Z* into two smaller pieces as a prelude to giving the inductive step in the proof. Section 20.6 proves the following induction step: If the Intertwining Lemma is true for g ɛ GA then it is also true for g + dTA (0, 1). Section 20.7 explains what needs to be done to finish the proof of the Intertwining Lemma. Section 20.8 proves the Intertwining Theorem for points in Π‎A corresponding to the points gn = (n + 1/2)(1 + A, 1 − A) for n = 0, 1, 2, ... which all belong to GA. This result combines with the induction step to finish the proof, as explained in Section 20.7.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Intertwining Lemma\",\"authors\":\"R. Schwartz\",\"doi\":\"10.2307/j.ctv5rf6tz.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter gives a proof of the Intertwining Lemma. Section 20.2 lists out the formulas for all the maps involved. Section 20.3 recalls the definition of Z* and proves Statement 3 of the Intertwining Lemma. Section 20.4 proves statements 1 and 2 of the Intertwining Lemma for a single point. Section 20.5 decomposes Z* into two smaller pieces as a prelude to giving the inductive step in the proof. Section 20.6 proves the following induction step: If the Intertwining Lemma is true for g ɛ GA then it is also true for g + dTA (0, 1). Section 20.7 explains what needs to be done to finish the proof of the Intertwining Lemma. Section 20.8 proves the Intertwining Theorem for points in Π‎A corresponding to the points gn = (n + 1/2)(1 + A, 1 − A) for n = 0, 1, 2, ... which all belong to GA. This result combines with the induction step to finish the proof, as explained in Section 20.7.\",\"PeriodicalId\":205299,\"journal\":{\"name\":\"The Plaid Model\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plaid Model\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv5rf6tz.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章给出了缠结引理的一个证明。第20.2节列出了所涉及的所有映射的公式。第20.3节回顾了Z*的定义并证明了缠结引理的表述3。第20.4节证明了单点的缠结引理的表述1和表述2。第20.5节将Z*分解为两个较小的部分,作为给出证明中归纳步骤的前奏。第20.6节证明了以下归纳步骤:如果缠结引理对g * GA成立,那么它对g + dTA(0,1)也成立。第20.7节解释了完成缠结引理的证明需要做些什么。第20.8节证明了Π·A中对应于点gn = (n + 1/2)(1 + A, 1−A)的点的缠结定理,对于n = 0,1,2,…都属于GA。这个结果结合归纳步骤完成证明,如第20.7节所述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Intertwining Lemma
This chapter gives a proof of the Intertwining Lemma. Section 20.2 lists out the formulas for all the maps involved. Section 20.3 recalls the definition of Z* and proves Statement 3 of the Intertwining Lemma. Section 20.4 proves statements 1 and 2 of the Intertwining Lemma for a single point. Section 20.5 decomposes Z* into two smaller pieces as a prelude to giving the inductive step in the proof. Section 20.6 proves the following induction step: If the Intertwining Lemma is true for g ɛ GA then it is also true for g + dTA (0, 1). Section 20.7 explains what needs to be done to finish the proof of the Intertwining Lemma. Section 20.8 proves the Intertwining Theorem for points in Π‎A corresponding to the points gn = (n + 1/2)(1 + A, 1 − A) for n = 0, 1, 2, ... which all belong to GA. This result combines with the induction step to finish the proof, as explained in Section 20.7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信