超启发式方法在柔性制造系统中的应用

Alexis Linard, Joost van Pinxten
{"title":"超启发式方法在柔性制造系统中的应用","authors":"Alexis Linard, Joost van Pinxten","doi":"10.1109/DSD.2019.00057","DOIUrl":null,"url":null,"abstract":"Optimizing the productivity of Flexible Manufacturing Systems requires online scheduling to ensure that the timing constraints due to complex interactions between modules are satisfied. This work focuses on optimizing a ranking metric such that the online scheduler locally (i.e., per product) chooses an option that yields the highest productivity in the long term. In this paper, we focus on the scheduling of a re-entrant Flexible Manufacturing System, more specifically a Large Scale Printer capable of printing hundreds of sheets per minute. The system requires an online scheduler that determines for each sheet when it should enter the system, be printed for the first time, and when it should return for its second print. We have applied genetic programming, a hyper-heuristic, to heuristically find good ranking metrics that can be used in an online scheduling heuristic. The results show that metrics can be tuned for different job types, to increase the productivity of such systems. Our methods achieved a significant reduction in the jobs' makespan.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of Hyper-Heuristics to Flexible Manufacturing Systems\",\"authors\":\"Alexis Linard, Joost van Pinxten\",\"doi\":\"10.1109/DSD.2019.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the productivity of Flexible Manufacturing Systems requires online scheduling to ensure that the timing constraints due to complex interactions between modules are satisfied. This work focuses on optimizing a ranking metric such that the online scheduler locally (i.e., per product) chooses an option that yields the highest productivity in the long term. In this paper, we focus on the scheduling of a re-entrant Flexible Manufacturing System, more specifically a Large Scale Printer capable of printing hundreds of sheets per minute. The system requires an online scheduler that determines for each sheet when it should enter the system, be printed for the first time, and when it should return for its second print. We have applied genetic programming, a hyper-heuristic, to heuristically find good ranking metrics that can be used in an online scheduling heuristic. The results show that metrics can be tuned for different job types, to increase the productivity of such systems. Our methods achieved a significant reduction in the jobs' makespan.\",\"PeriodicalId\":217233,\"journal\":{\"name\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2019.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化柔性制造系统的生产效率需要在线调度,以保证由于模块间复杂的相互作用而产生的时间约束得到满足。这项工作的重点是优化一个排名指标,这样本地(即每个产品)的在线调度器就会选择一个在长期内产生最高生产力的选项。在本文中,我们关注的是一个可再入柔性制造系统的调度,更具体地说,是一个能够每分钟打印数百张纸的大型打印机。系统需要一个在线调度程序来决定每张纸何时应该进入系统,何时应该第一次打印,以及何时应该返回第二次打印。我们已经应用了遗传规划,一种超启发式方法,来启发式地找到可以在在线调度启发式中使用的好的排名指标。结果表明,度量标准可以针对不同的作业类型进行调整,以提高此类系统的生产率。我们的方法显著降低了作业的完工时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of Hyper-Heuristics to Flexible Manufacturing Systems
Optimizing the productivity of Flexible Manufacturing Systems requires online scheduling to ensure that the timing constraints due to complex interactions between modules are satisfied. This work focuses on optimizing a ranking metric such that the online scheduler locally (i.e., per product) chooses an option that yields the highest productivity in the long term. In this paper, we focus on the scheduling of a re-entrant Flexible Manufacturing System, more specifically a Large Scale Printer capable of printing hundreds of sheets per minute. The system requires an online scheduler that determines for each sheet when it should enter the system, be printed for the first time, and when it should return for its second print. We have applied genetic programming, a hyper-heuristic, to heuristically find good ranking metrics that can be used in an online scheduling heuristic. The results show that metrics can be tuned for different job types, to increase the productivity of such systems. Our methods achieved a significant reduction in the jobs' makespan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信