基于条件方差和的MRI体积鲁棒三维多模态配准

Mst. Nargis Aktar, M. Alam, A. Lambert, M. Pickering
{"title":"基于条件方差和的MRI体积鲁棒三维多模态配准","authors":"Mst. Nargis Aktar, M. Alam, A. Lambert, M. Pickering","doi":"10.1109/DICTA.2013.6691520","DOIUrl":null,"url":null,"abstract":"Multi-modal registration is a fundamental step for many medical imaging procedures. In this paper, the sum of conditional variance (SCV) similarity measure is proposed for 3D multi-modal medical image registration. The SCV similarity measure is based on minimizing the sum of conditional variances that are calculated using the joint histogram of the two images to be registered. Standard Gauss-Newton optimization is used to automatically minimize this measure which allows fast computational time and high accuracy. Experimental results show that our proposed approach is robust, computationally efficient and also more accurate when compared with the standard mutual information (MI) based approach and also the recently proposed sum-of-squared-difference on entropy images (eSSD) approach.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust 3D Multi-Modal Registration of MRI Volumes Using the Sum of Conditional Variance\",\"authors\":\"Mst. Nargis Aktar, M. Alam, A. Lambert, M. Pickering\",\"doi\":\"10.1109/DICTA.2013.6691520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-modal registration is a fundamental step for many medical imaging procedures. In this paper, the sum of conditional variance (SCV) similarity measure is proposed for 3D multi-modal medical image registration. The SCV similarity measure is based on minimizing the sum of conditional variances that are calculated using the joint histogram of the two images to be registered. Standard Gauss-Newton optimization is used to automatically minimize this measure which allows fast computational time and high accuracy. Experimental results show that our proposed approach is robust, computationally efficient and also more accurate when compared with the standard mutual information (MI) based approach and also the recently proposed sum-of-squared-difference on entropy images (eSSD) approach.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多模态配准是许多医学成像程序的基本步骤。本文提出了一种用于三维多模态医学图像配准的条件方差和相似度度量方法。SCV相似性度量是基于最小化条件方差的总和,这些方差是使用要注册的两个图像的联合直方图计算的。采用标准高斯-牛顿优化自动最小化这一措施,允许快速的计算时间和高精度。实验结果表明,与基于互信息(MI)的标准方法和最近提出的熵图像平方差和(eSSD)方法相比,该方法具有鲁棒性、计算效率高和精度高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust 3D Multi-Modal Registration of MRI Volumes Using the Sum of Conditional Variance
Multi-modal registration is a fundamental step for many medical imaging procedures. In this paper, the sum of conditional variance (SCV) similarity measure is proposed for 3D multi-modal medical image registration. The SCV similarity measure is based on minimizing the sum of conditional variances that are calculated using the joint histogram of the two images to be registered. Standard Gauss-Newton optimization is used to automatically minimize this measure which allows fast computational time and high accuracy. Experimental results show that our proposed approach is robust, computationally efficient and also more accurate when compared with the standard mutual information (MI) based approach and also the recently proposed sum-of-squared-difference on entropy images (eSSD) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信