基于可达集分析的自动驾驶车辆责任敏感安全性研究

P. Orzechowski, Kun Li, M. Lauer
{"title":"基于可达集分析的自动驾驶车辆责任敏感安全性研究","authors":"P. Orzechowski, Kun Li, M. Lauer","doi":"10.1109/ICCVE45908.2019.8965069","DOIUrl":null,"url":null,"abstract":"One of the most critical, unsolved challenges for the introduction of automated vehicles is safety verification of planned trajectories. The most promising concepts approaching this topic are worst-case occupancy predictions based on reachable set analysis and the definition of Responsibility-Sensitive Safety (RSS) that formalizes dangerous situations and proper responses. Worst-case predictions result in over-conservative behavior while the RSS approach makes strong assumptions w.r.t. lateral and longitudinal behavior. Our contribution is a first step in bringing both worlds together, to benefit from respective advantages. First, we define RSS-motivated safe-states for merge and crossing scenarios, that ensure absolute safety towards leading vehicles, appropriate time gaps towards following vehicles in merging lanes and minimum clearance time of conflict zones with crossing lanes. We then show how to integrate these safety constraints in a trajectory and behavior planner using reachable sets and finally illustrate its usefulness in various simulative evaluations.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Towards Responsibility-Sensitive Safety of Automated Vehicles with Reachable Set Analysis\",\"authors\":\"P. Orzechowski, Kun Li, M. Lauer\",\"doi\":\"10.1109/ICCVE45908.2019.8965069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most critical, unsolved challenges for the introduction of automated vehicles is safety verification of planned trajectories. The most promising concepts approaching this topic are worst-case occupancy predictions based on reachable set analysis and the definition of Responsibility-Sensitive Safety (RSS) that formalizes dangerous situations and proper responses. Worst-case predictions result in over-conservative behavior while the RSS approach makes strong assumptions w.r.t. lateral and longitudinal behavior. Our contribution is a first step in bringing both worlds together, to benefit from respective advantages. First, we define RSS-motivated safe-states for merge and crossing scenarios, that ensure absolute safety towards leading vehicles, appropriate time gaps towards following vehicles in merging lanes and minimum clearance time of conflict zones with crossing lanes. We then show how to integrate these safety constraints in a trajectory and behavior planner using reachable sets and finally illustrate its usefulness in various simulative evaluations.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8965069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

引入自动驾驶汽车最关键、最未解决的挑战之一是对规划轨迹的安全验证。这个主题最有前途的概念是基于可达集分析的最坏情况占用预测和责任敏感安全(RSS)的定义,该定义将危险情况和适当的响应形式化。最坏情况预测会导致过度保守的行为,而RSS方法对横向和纵向行为做出了强有力的假设。我们的贡献是将两个世界结合在一起,从各自的优势中获益的第一步。首先,我们为合并和交叉场景定义了rss驱动的安全状态,以确保对领先车辆的绝对安全,对合并车道中跟随车辆的适当时间间隔以及与交叉车道冲突区域的最小清除时间。然后,我们将展示如何使用可达集将这些安全约束集成到轨迹和行为规划器中,并最终说明其在各种模拟评估中的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Responsibility-Sensitive Safety of Automated Vehicles with Reachable Set Analysis
One of the most critical, unsolved challenges for the introduction of automated vehicles is safety verification of planned trajectories. The most promising concepts approaching this topic are worst-case occupancy predictions based on reachable set analysis and the definition of Responsibility-Sensitive Safety (RSS) that formalizes dangerous situations and proper responses. Worst-case predictions result in over-conservative behavior while the RSS approach makes strong assumptions w.r.t. lateral and longitudinal behavior. Our contribution is a first step in bringing both worlds together, to benefit from respective advantages. First, we define RSS-motivated safe-states for merge and crossing scenarios, that ensure absolute safety towards leading vehicles, appropriate time gaps towards following vehicles in merging lanes and minimum clearance time of conflict zones with crossing lanes. We then show how to integrate these safety constraints in a trajectory and behavior planner using reachable sets and finally illustrate its usefulness in various simulative evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信