基于离散切切夫变换的快速动态语音识别

F. Ernawan, E. Noersasongko, N. A. Abu
{"title":"基于离散切切夫变换的快速动态语音识别","authors":"F. Ernawan, E. Noersasongko, N. A. Abu","doi":"10.1109/ICI.2011.48","DOIUrl":null,"url":null,"abstract":"Traditionally, speech recognition requires large computational windows. This paper proposes an approach based on 256 discrete orthonormal Tchebichef polynomials for efficient speech recognition. The method uses a simplified set of recurrence relation matrix to compute within each window. Unlike the Fast Fourier Transform (FFT), discrete orthonormal Tchebichef transform (DTT) provides simpler matrix setting which involves real coefficient number only. The comparison among 256 DTT, 1024 DTT and 1024 FFT has been done to recognize five vowels and five consonants. The experimental results show the practical advantage of 256 Discrete Tchebichef Transform in term of spectral frequency and time taken of speech recognition performance. 256 DTT produces frequency formants relatively identical similar output with 1024 DTT and 1024 FFT in term of speech recognition. The 256 DTT has a potential to be a competitive candidate for computationally efficient dynamic speech recognition.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast Dynamic Speech Recognition via Discrete Tchebichef Transform\",\"authors\":\"F. Ernawan, E. Noersasongko, N. A. Abu\",\"doi\":\"10.1109/ICI.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, speech recognition requires large computational windows. This paper proposes an approach based on 256 discrete orthonormal Tchebichef polynomials for efficient speech recognition. The method uses a simplified set of recurrence relation matrix to compute within each window. Unlike the Fast Fourier Transform (FFT), discrete orthonormal Tchebichef transform (DTT) provides simpler matrix setting which involves real coefficient number only. The comparison among 256 DTT, 1024 DTT and 1024 FFT has been done to recognize five vowels and five consonants. The experimental results show the practical advantage of 256 Discrete Tchebichef Transform in term of spectral frequency and time taken of speech recognition performance. 256 DTT produces frequency formants relatively identical similar output with 1024 DTT and 1024 FFT in term of speech recognition. The 256 DTT has a potential to be a competitive candidate for computationally efficient dynamic speech recognition.\",\"PeriodicalId\":146712,\"journal\":{\"name\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICI.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

传统上,语音识别需要较大的计算窗口。提出了一种基于256个离散正交切切夫多项式的高效语音识别方法。该方法使用一组简化的递归关系矩阵在每个窗口内进行计算。与快速傅里叶变换(FFT)不同,离散正交切比切夫变换(DTT)提供了更简单的矩阵设置,只涉及实系数数。对256 DTT、1024 DTT和1024 FFT进行了比较,以识别5个元音和5个辅音。实验结果表明,256离散切切夫变换在频谱频率和语音识别时间方面具有实用优势。在语音识别方面,256 DTT产生的频率共振峰与1024 DTT和1024 FFT相对相同的相似输出。256数字地面电视有潜力成为计算效率高的动态语音识别的竞争候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Dynamic Speech Recognition via Discrete Tchebichef Transform
Traditionally, speech recognition requires large computational windows. This paper proposes an approach based on 256 discrete orthonormal Tchebichef polynomials for efficient speech recognition. The method uses a simplified set of recurrence relation matrix to compute within each window. Unlike the Fast Fourier Transform (FFT), discrete orthonormal Tchebichef transform (DTT) provides simpler matrix setting which involves real coefficient number only. The comparison among 256 DTT, 1024 DTT and 1024 FFT has been done to recognize five vowels and five consonants. The experimental results show the practical advantage of 256 Discrete Tchebichef Transform in term of spectral frequency and time taken of speech recognition performance. 256 DTT produces frequency formants relatively identical similar output with 1024 DTT and 1024 FFT in term of speech recognition. The 256 DTT has a potential to be a competitive candidate for computationally efficient dynamic speech recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信