职位推荐系统的集成方法

Chenrui Zhang, Xueqi Cheng
{"title":"职位推荐系统的集成方法","authors":"Chenrui Zhang, Xueqi Cheng","doi":"10.1145/2987538.2987545","DOIUrl":null,"url":null,"abstract":"In this paper, we present an ensemble method for job recommendation to ACM RecSys Challenge 2016. Given a user, the goal of a job recommendation system is to predict those job postings that are likely to be relevant to the user1.\n Firstly, we analyze the train dataset and find several interesting patterns. Secondly, we describe our solution, which is an ensemble of two filters, combining the merits of traditional collaborative filtering and content-based filtering. Our approach finally achieved a score of 1632828.82, ranked at the 10th place on the public leaderboard.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An ensemble method for job recommender systems\",\"authors\":\"Chenrui Zhang, Xueqi Cheng\",\"doi\":\"10.1145/2987538.2987545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an ensemble method for job recommendation to ACM RecSys Challenge 2016. Given a user, the goal of a job recommendation system is to predict those job postings that are likely to be relevant to the user1.\\n Firstly, we analyze the train dataset and find several interesting patterns. Secondly, we describe our solution, which is an ensemble of two filters, combining the merits of traditional collaborative filtering and content-based filtering. Our approach finally achieved a score of 1632828.82, ranked at the 10th place on the public leaderboard.\",\"PeriodicalId\":127880,\"journal\":{\"name\":\"RecSys Challenge '16\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RecSys Challenge '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987538.2987545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们提出了一种集成方法,用于向2016年ACM RecSys挑战赛推荐工作。给定一个用户,工作推荐系统的目标是预测那些可能与该用户相关的职位发布1。首先,我们分析了训练数据集,发现了几个有趣的模式。其次,结合传统协同过滤和基于内容过滤的优点,提出了一种集成两种过滤的方案。我们的方法最终获得了1632828.82的分数,在公开排行榜上排名第10位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble method for job recommender systems
In this paper, we present an ensemble method for job recommendation to ACM RecSys Challenge 2016. Given a user, the goal of a job recommendation system is to predict those job postings that are likely to be relevant to the user1. Firstly, we analyze the train dataset and find several interesting patterns. Secondly, we describe our solution, which is an ensemble of two filters, combining the merits of traditional collaborative filtering and content-based filtering. Our approach finally achieved a score of 1632828.82, ranked at the 10th place on the public leaderboard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信