基于自动查询扩展和Hopfield网络的信息检索系统

Xiao Sheng, Minghu Jiang
{"title":"基于自动查询扩展和Hopfield网络的信息检索系统","authors":"Xiao Sheng, Minghu Jiang","doi":"10.1109/ICNNSP.2003.1281192","DOIUrl":null,"url":null,"abstract":"Automatic query expansion technique has been extensively used in a variety of information retrieval (IR) systems as a means of solving the problems of information overload and word mismatch. Based on the technique and Hopfield network, we propose a new IR model, called LCA-ANN model. With the heuristic function of Hopfield network, the new model is more precise in query expansion compared with other current models and can therefore enhance the performance greatly.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An information retrieval system based on automatic query expansion and Hopfield network\",\"authors\":\"Xiao Sheng, Minghu Jiang\",\"doi\":\"10.1109/ICNNSP.2003.1281192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic query expansion technique has been extensively used in a variety of information retrieval (IR) systems as a means of solving the problems of information overload and word mismatch. Based on the technique and Hopfield network, we propose a new IR model, called LCA-ANN model. With the heuristic function of Hopfield network, the new model is more precise in query expansion compared with other current models and can therefore enhance the performance greatly.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1281192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1281192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自动查询扩展技术作为解决信息过载和词错配问题的一种手段,已广泛应用于各种信息检索系统中。基于Hopfield网络,我们提出了一种新的IR模型,称为LCA-ANN模型。利用Hopfield网络的启发式功能,新模型在查询扩展方面比现有模型更加精确,从而大大提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An information retrieval system based on automatic query expansion and Hopfield network
Automatic query expansion technique has been extensively used in a variety of information retrieval (IR) systems as a means of solving the problems of information overload and word mismatch. Based on the technique and Hopfield network, we propose a new IR model, called LCA-ANN model. With the heuristic function of Hopfield network, the new model is more precise in query expansion compared with other current models and can therefore enhance the performance greatly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信