P. Mendes, Eduardo S. Vieira, Alan Livio Vasconcelos Guedes, A. Busson, S. Colcher
{"title":"基于聚类的讲师深度人脸特征教育视频自动推荐方法","authors":"P. Mendes, Eduardo S. Vieira, Alan Livio Vasconcelos Guedes, A. Busson, S. Colcher","doi":"10.1109/ISM.2020.00034","DOIUrl":null,"url":null,"abstract":"Discovering and accessing specific content within educational video bases is a challenging task, mainly because of the abundance of video content and its diversity. Recommender systems are often used to enhance the ability to find and select content. But, recommendation mechanisms, especially those based on textual information, exhibit some limitations, such as being error-prone to manually created keywords or due to imprecise speech recognition. This paper presents a method for generating educational video recommendations using deep face-features of lecturers without identifying them. More precisely, we use an unsupervised face clustering mechanism to create relations among the videos based on the lecturer's presence. Then, for a selected educational video taken as a reference, we recommend the ones where the presence of the same lecturers is detected. Moreover, we rank these recommended videos based on the amount of time the referenced lecturers were present. For this task, we achieved an mAP value of 99.165%.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Clustering-Based Method for Automatic Educational Video Recommendation Using Deep Face-Features of Lecturers\",\"authors\":\"P. Mendes, Eduardo S. Vieira, Alan Livio Vasconcelos Guedes, A. Busson, S. Colcher\",\"doi\":\"10.1109/ISM.2020.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering and accessing specific content within educational video bases is a challenging task, mainly because of the abundance of video content and its diversity. Recommender systems are often used to enhance the ability to find and select content. But, recommendation mechanisms, especially those based on textual information, exhibit some limitations, such as being error-prone to manually created keywords or due to imprecise speech recognition. This paper presents a method for generating educational video recommendations using deep face-features of lecturers without identifying them. More precisely, we use an unsupervised face clustering mechanism to create relations among the videos based on the lecturer's presence. Then, for a selected educational video taken as a reference, we recommend the ones where the presence of the same lecturers is detected. Moreover, we rank these recommended videos based on the amount of time the referenced lecturers were present. For this task, we achieved an mAP value of 99.165%.\",\"PeriodicalId\":120972,\"journal\":{\"name\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2020.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Clustering-Based Method for Automatic Educational Video Recommendation Using Deep Face-Features of Lecturers
Discovering and accessing specific content within educational video bases is a challenging task, mainly because of the abundance of video content and its diversity. Recommender systems are often used to enhance the ability to find and select content. But, recommendation mechanisms, especially those based on textual information, exhibit some limitations, such as being error-prone to manually created keywords or due to imprecise speech recognition. This paper presents a method for generating educational video recommendations using deep face-features of lecturers without identifying them. More precisely, we use an unsupervised face clustering mechanism to create relations among the videos based on the lecturer's presence. Then, for a selected educational video taken as a reference, we recommend the ones where the presence of the same lecturers is detected. Moreover, we rank these recommended videos based on the amount of time the referenced lecturers were present. For this task, we achieved an mAP value of 99.165%.