异方差估计对随机克里格的影响

Wenjing Wang, Xi Chen
{"title":"异方差估计对随机克里格的影响","authors":"Wenjing Wang, Xi Chen","doi":"10.1109/WSC.2016.7822100","DOIUrl":null,"url":null,"abstract":"In this paper, we study the effects of using smoothed variance estimates in place of the sample variances on the performance of stochastic kriging (SK). Different variance estimation methods are investigated and it is shown through numerical examples that such a replacement leads to improved predictive performance of SK. An SK-based dual metamodeling approach is further proposed to obtain an efficient simulation budget allocation rule and consequently more accurate prediction results.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The effects of estimation of heteroscedasticity on stochastic kriging\",\"authors\":\"Wenjing Wang, Xi Chen\",\"doi\":\"10.1109/WSC.2016.7822100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the effects of using smoothed variance estimates in place of the sample variances on the performance of stochastic kriging (SK). Different variance estimation methods are investigated and it is shown through numerical examples that such a replacement leads to improved predictive performance of SK. An SK-based dual metamodeling approach is further proposed to obtain an efficient simulation budget allocation rule and consequently more accurate prediction results.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们研究了使用平滑方差估计代替样本方差对随机克里格(SK)性能的影响。研究了不同的方差估计方法,并通过数值算例表明,这种替换可以提高SK的预测性能。进一步提出了一种基于SK的双元建模方法,以获得有效的模拟预算分配规则,从而获得更准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effects of estimation of heteroscedasticity on stochastic kriging
In this paper, we study the effects of using smoothed variance estimates in place of the sample variances on the performance of stochastic kriging (SK). Different variance estimation methods are investigated and it is shown through numerical examples that such a replacement leads to improved predictive performance of SK. An SK-based dual metamodeling approach is further proposed to obtain an efficient simulation budget allocation rule and consequently more accurate prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信