用给定挠度方程的初级系数恢复梁的初始参数

A. P. Loktionov
{"title":"用给定挠度方程的初级系数恢复梁的初始参数","authors":"A. P. Loktionov","doi":"10.37538/0039-2383.2022.6.2.7","DOIUrl":null,"url":null,"abstract":"Mathematical modeling and experimental study of the inverse Cauchy problem of restoring the initial parameters of the elastic line of a beam element of a building structure for given minor coefficients of the beam deflection equation are considered. With a uniform continuous absolute norm of error for measuring deflections by interpolating with a Lagrange polynomial, the distribution of deflection meters over the beam is obtained, which minimizes the error in restoring the initial parameters by the criterion of minimum of the Lebesgue function.","PeriodicalId":273885,"journal":{"name":"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RECOVERY OF THE INITIAL PARAMETERS OF THE BEAM WITH THE GIVEN JUNIOR COEFFICIENTS OF THE DEFLECTION EQUATION\",\"authors\":\"A. P. Loktionov\",\"doi\":\"10.37538/0039-2383.2022.6.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modeling and experimental study of the inverse Cauchy problem of restoring the initial parameters of the elastic line of a beam element of a building structure for given minor coefficients of the beam deflection equation are considered. With a uniform continuous absolute norm of error for measuring deflections by interpolating with a Lagrange polynomial, the distribution of deflection meters over the beam is obtained, which minimizes the error in restoring the initial parameters by the criterion of minimum of the Lebesgue function.\",\"PeriodicalId\":273885,\"journal\":{\"name\":\"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37538/0039-2383.2022.6.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37538/0039-2383.2022.6.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了在给定梁挠度方程小系数条件下恢复建筑结构梁单元弹性线初始参数的反柯西问题的数学建模和实验研究。利用拉格朗日多项式插值法测量挠度,得到了挠度计在梁上的均匀连续绝对误差范数,利用勒贝格函数的极小准则使恢复初始参数的误差最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECOVERY OF THE INITIAL PARAMETERS OF THE BEAM WITH THE GIVEN JUNIOR COEFFICIENTS OF THE DEFLECTION EQUATION
Mathematical modeling and experimental study of the inverse Cauchy problem of restoring the initial parameters of the elastic line of a beam element of a building structure for given minor coefficients of the beam deflection equation are considered. With a uniform continuous absolute norm of error for measuring deflections by interpolating with a Lagrange polynomial, the distribution of deflection meters over the beam is obtained, which minimizes the error in restoring the initial parameters by the criterion of minimum of the Lebesgue function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信