利用立体深度估计网络和激光雷达辅助相机进行去雾

Shih-Li Lu, S. Miaou, Shyang-En Weng, Ying-Cheng Lin
{"title":"利用立体深度估计网络和激光雷达辅助相机进行去雾","authors":"Shih-Li Lu, S. Miaou, Shyang-En Weng, Ying-Cheng Lin","doi":"10.1109/ICASI57738.2023.10179550","DOIUrl":null,"url":null,"abstract":"Dehazing research is crucial to ensuring the safety of autonomous driving. To estimate the scattering coefficient of the scene, we use the point cloud produced by LiDAR. To acquire a more precise scene depth, we employ a stereo depth network. Finally, we dehaze the image using the transmission map of the atmospheric scattering model and the atmospheric light value. Experimental results show that the proposed dehazing method works better in object detection than previous dehazing methods.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Stereo Depth Estimation Network and LiDAR-Assisted Camera for Dehazing\",\"authors\":\"Shih-Li Lu, S. Miaou, Shyang-En Weng, Ying-Cheng Lin\",\"doi\":\"10.1109/ICASI57738.2023.10179550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dehazing research is crucial to ensuring the safety of autonomous driving. To estimate the scattering coefficient of the scene, we use the point cloud produced by LiDAR. To acquire a more precise scene depth, we employ a stereo depth network. Finally, we dehaze the image using the transmission map of the atmospheric scattering model and the atmospheric light value. Experimental results show that the proposed dehazing method works better in object detection than previous dehazing methods.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除雾研究对于确保自动驾驶的安全性至关重要。为了估计场景的散射系数,我们使用激光雷达产生的点云。为了获得更精确的场景深度,我们采用了立体深度网络。最后,利用大气散射模型的透射图和大气光值对图像进行去雾处理。实验结果表明,所提出的除雾方法比以往的除雾方法具有更好的目标检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Stereo Depth Estimation Network and LiDAR-Assisted Camera for Dehazing
Dehazing research is crucial to ensuring the safety of autonomous driving. To estimate the scattering coefficient of the scene, we use the point cloud produced by LiDAR. To acquire a more precise scene depth, we employ a stereo depth network. Finally, we dehaze the image using the transmission map of the atmospheric scattering model and the atmospheric light value. Experimental results show that the proposed dehazing method works better in object detection than previous dehazing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信