基于粒子群优化的多层感知器电价预测

S. Udaiyakumar, CL Chinnadurrai, C. Anandhakumar, S. Ravindran
{"title":"基于粒子群优化的多层感知器电价预测","authors":"S. Udaiyakumar, CL Chinnadurrai, C. Anandhakumar, S. Ravindran","doi":"10.1109/STCR55312.2022.10009414","DOIUrl":null,"url":null,"abstract":"In this paper, electricity price forecasting using a hybrid multilayer perceptron, back propagation and modified particle swarm optimization is implemented. Here modified particle swarm optimization technique is used to improve the performance of the backpropagation algorithm while training the multilayer perceptron. Two different MLP are used for electricity price forecasting one MLP is with a single hidden layer and another MLP is with three hidden layers, both the neural networks are trained by BP and initial parameters such as weights between different layers, the bias of the layers, and activation function of each layer except input layer are selected by MPSO. Normally MLP trained by BP uses linear activation functions for all layers and neurons, but in this case, we use three different functions namely linear function, sigmoid function, and tangent function as activation functions. These three different activation functions are independently selected for each neuron by MPSO based on the data set which is used. Because of the independent selection of activation function to each neuron the overall performance, convergence time, and convergence efficiency of the BP are greatly improved. The proposed method is implemented to predict Austria and Northern Italy electricity price.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electricity Price Forecasting using Multilayer Perceptron Optimized by Particle Swarm Optimization\",\"authors\":\"S. Udaiyakumar, CL Chinnadurrai, C. Anandhakumar, S. Ravindran\",\"doi\":\"10.1109/STCR55312.2022.10009414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, electricity price forecasting using a hybrid multilayer perceptron, back propagation and modified particle swarm optimization is implemented. Here modified particle swarm optimization technique is used to improve the performance of the backpropagation algorithm while training the multilayer perceptron. Two different MLP are used for electricity price forecasting one MLP is with a single hidden layer and another MLP is with three hidden layers, both the neural networks are trained by BP and initial parameters such as weights between different layers, the bias of the layers, and activation function of each layer except input layer are selected by MPSO. Normally MLP trained by BP uses linear activation functions for all layers and neurons, but in this case, we use three different functions namely linear function, sigmoid function, and tangent function as activation functions. These three different activation functions are independently selected for each neuron by MPSO based on the data set which is used. Because of the independent selection of activation function to each neuron the overall performance, convergence time, and convergence efficiency of the BP are greatly improved. The proposed method is implemented to predict Austria and Northern Italy electricity price.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用混合多层感知器、反向传播和修正粒子群算法实现了电价预测。本文在训练多层感知器的同时,采用改进的粒子群优化技术来提高反向传播算法的性能。采用两种不同的MLP进行电价预测,一种MLP为单隐层,另一种MLP为三隐层,两种神经网络均采用BP神经网络进行训练,并通过MPSO选择初始参数,如层间权重、层间偏差、除输入层外各层的激活函数等。通常情况下,BP训练的MLP对所有层和神经元使用线性激活函数,但在这种情况下,我们使用三种不同的函数,即线性函数、sigmoid函数和正切函数作为激活函数。基于所使用的数据集,MPSO为每个神经元独立选择这三种不同的激活函数。由于每个神经元激活函数的独立选择,大大提高了BP的整体性能、收敛时间和收敛效率。将该方法应用于奥地利和意大利北部的电价预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity Price Forecasting using Multilayer Perceptron Optimized by Particle Swarm Optimization
In this paper, electricity price forecasting using a hybrid multilayer perceptron, back propagation and modified particle swarm optimization is implemented. Here modified particle swarm optimization technique is used to improve the performance of the backpropagation algorithm while training the multilayer perceptron. Two different MLP are used for electricity price forecasting one MLP is with a single hidden layer and another MLP is with three hidden layers, both the neural networks are trained by BP and initial parameters such as weights between different layers, the bias of the layers, and activation function of each layer except input layer are selected by MPSO. Normally MLP trained by BP uses linear activation functions for all layers and neurons, but in this case, we use three different functions namely linear function, sigmoid function, and tangent function as activation functions. These three different activation functions are independently selected for each neuron by MPSO based on the data set which is used. Because of the independent selection of activation function to each neuron the overall performance, convergence time, and convergence efficiency of the BP are greatly improved. The proposed method is implemented to predict Austria and Northern Italy electricity price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信