迈向数据驱动的足球运动员评估

R. Stanojevic, L. Gyarmati
{"title":"迈向数据驱动的足球运动员评估","authors":"R. Stanojevic, L. Gyarmati","doi":"10.1109/ICDMW.2016.0031","DOIUrl":null,"url":null,"abstract":"Understanding the value of a football player is a challenging problem. Player valuation is not only critical for scouting, bidding and negotiation processes but also attracts a large media and fan interest. Due to the complexities which arise from the fact that player pool is distributed over hundreds of different leagues and many different playing positions, many clubs hire domain experts (often retired professional players) in order to evaluate the value of potential players. We argue that such human-based scouting has several drawbacks including high cost, inability to scale to thousands of active players and inevitable subjective biases. In this paper we present a methodology for data-driven player market value estimation which tackles these drawbacks. To examine the quality of the proposed methodology and demonstrate that our data-driven valuation outperforms widely used transfermarkt.com market value estimates in predicting the team performance.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Towards Data-Driven Football Player Assessment\",\"authors\":\"R. Stanojevic, L. Gyarmati\",\"doi\":\"10.1109/ICDMW.2016.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the value of a football player is a challenging problem. Player valuation is not only critical for scouting, bidding and negotiation processes but also attracts a large media and fan interest. Due to the complexities which arise from the fact that player pool is distributed over hundreds of different leagues and many different playing positions, many clubs hire domain experts (often retired professional players) in order to evaluate the value of potential players. We argue that such human-based scouting has several drawbacks including high cost, inability to scale to thousands of active players and inevitable subjective biases. In this paper we present a methodology for data-driven player market value estimation which tackles these drawbacks. To examine the quality of the proposed methodology and demonstrate that our data-driven valuation outperforms widely used transfermarkt.com market value estimates in predicting the team performance.\",\"PeriodicalId\":373866,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2016.0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

理解足球运动员的价值是一个具有挑战性的问题。球员估值不仅对球探、报价和谈判过程至关重要,而且还能吸引大量媒体和球迷的兴趣。由于球员分布在数百个不同的联赛和许多不同的位置,这一事实产生了复杂性,许多俱乐部聘请领域专家(通常是退役的职业球员)来评估潜在球员的价值。我们认为这种基于人类的球探有几个缺点,包括高成本,无法扩展到数千名活跃玩家和不可避免的主观偏见。在本文中,我们提出了一种数据驱动的玩家市场价值评估方法,以解决这些缺陷。为了检验所提出方法的质量,并证明我们的数据驱动估值在预测团队绩效方面优于广泛使用的transfermarkt.com市场价值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Data-Driven Football Player Assessment
Understanding the value of a football player is a challenging problem. Player valuation is not only critical for scouting, bidding and negotiation processes but also attracts a large media and fan interest. Due to the complexities which arise from the fact that player pool is distributed over hundreds of different leagues and many different playing positions, many clubs hire domain experts (often retired professional players) in order to evaluate the value of potential players. We argue that such human-based scouting has several drawbacks including high cost, inability to scale to thousands of active players and inevitable subjective biases. In this paper we present a methodology for data-driven player market value estimation which tackles these drawbacks. To examine the quality of the proposed methodology and demonstrate that our data-driven valuation outperforms widely used transfermarkt.com market value estimates in predicting the team performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信