Takahide Hosokawa, Songkran Jarusirisawad, H. Saito
{"title":"通过平面扫描算法,使用多个未校准的摄像机进行在线视频合成,以去除遮挡物体","authors":"Takahide Hosokawa, Songkran Jarusirisawad, H. Saito","doi":"10.1109/ICDSC.2009.5289380","DOIUrl":null,"url":null,"abstract":"We present an online rendering system which removes occluding objects in front of the objective scene from an input video using multiple videos taken with multiple cameras. To obtain geometrical relations between all cameras, we use projective grid space (PGS) defined by epipolar geometry between two basis cameras. Then we apply plane-sweep algorithm for generating depth image in the input camera. By excluding the area of occluding objects from the volume of the sweeping planes, we can generate the depthmap without the occluding objects. Using this depthmap, we can render the image without obstacles from all the multiple camera videos. Since we use graphics processing unit (GPU) for computation, we can achieve realtime online rendering using a normal spec PC and multiple USB cameras.","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Online video synthesis for removing occluding objects using multiple uncalibrated cameras via plane sweep algorithm\",\"authors\":\"Takahide Hosokawa, Songkran Jarusirisawad, H. Saito\",\"doi\":\"10.1109/ICDSC.2009.5289380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an online rendering system which removes occluding objects in front of the objective scene from an input video using multiple videos taken with multiple cameras. To obtain geometrical relations between all cameras, we use projective grid space (PGS) defined by epipolar geometry between two basis cameras. Then we apply plane-sweep algorithm for generating depth image in the input camera. By excluding the area of occluding objects from the volume of the sweeping planes, we can generate the depthmap without the occluding objects. Using this depthmap, we can render the image without obstacles from all the multiple camera videos. Since we use graphics processing unit (GPU) for computation, we can achieve realtime online rendering using a normal spec PC and multiple USB cameras.\",\"PeriodicalId\":324810,\"journal\":{\"name\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2009.5289380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online video synthesis for removing occluding objects using multiple uncalibrated cameras via plane sweep algorithm
We present an online rendering system which removes occluding objects in front of the objective scene from an input video using multiple videos taken with multiple cameras. To obtain geometrical relations between all cameras, we use projective grid space (PGS) defined by epipolar geometry between two basis cameras. Then we apply plane-sweep algorithm for generating depth image in the input camera. By excluding the area of occluding objects from the volume of the sweeping planes, we can generate the depthmap without the occluding objects. Using this depthmap, we can render the image without obstacles from all the multiple camera videos. Since we use graphics processing unit (GPU) for computation, we can achieve realtime online rendering using a normal spec PC and multiple USB cameras.