文献收集的半监督心理测量评分

Burak Suyunu, Gonul Ayci, Mine Ögretir, A. Cemgil, S. Uskudarli, Hamza Zeytinoglu, Bülent Özel, Arman Boyaci
{"title":"文献收集的半监督心理测量评分","authors":"Burak Suyunu, Gonul Ayci, Mine Ögretir, A. Cemgil, S. Uskudarli, Hamza Zeytinoglu, Bülent Özel, Arman Boyaci","doi":"10.1109/ICDMW.2018.00194","DOIUrl":null,"url":null,"abstract":"We describe a generic computational approach that can be used in developing methods for psychometric profiling. Our approach is based on semi-supervised analysis of document collections using topic modeling. The method depends on a supervisor providing a set of seed documents, grouped by abstract themes, such as Schwartz values or personality traits; and possibly a separate background document corpus. Instead of casting the problem into a standard classification framework, we interpret the group labels as a guide for finding distinguishing features. During training, we train each group of documents associated with a theme separately by using nonnegative matrix factorization to obtain theme specific topic distributions. In the analysis, we decompose a new document using the model learned during training to arrive at the theme scores. We demonstrate our approach on two psychometric profiling theories (Schwartz and Big Five) and evaluate our Schwartz scores with leave-one-out cross-validation method and compare Big Five scores to independent surveys, which are much more costly to carry out.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Psychometric Scoring of Document Collections\",\"authors\":\"Burak Suyunu, Gonul Ayci, Mine Ögretir, A. Cemgil, S. Uskudarli, Hamza Zeytinoglu, Bülent Özel, Arman Boyaci\",\"doi\":\"10.1109/ICDMW.2018.00194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a generic computational approach that can be used in developing methods for psychometric profiling. Our approach is based on semi-supervised analysis of document collections using topic modeling. The method depends on a supervisor providing a set of seed documents, grouped by abstract themes, such as Schwartz values or personality traits; and possibly a separate background document corpus. Instead of casting the problem into a standard classification framework, we interpret the group labels as a guide for finding distinguishing features. During training, we train each group of documents associated with a theme separately by using nonnegative matrix factorization to obtain theme specific topic distributions. In the analysis, we decompose a new document using the model learned during training to arrive at the theme scores. We demonstrate our approach on two psychometric profiling theories (Schwartz and Big Five) and evaluate our Schwartz scores with leave-one-out cross-validation method and compare Big Five scores to independent surveys, which are much more costly to carry out.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种通用的计算方法,可用于开发心理测量分析方法。我们的方法是基于使用主题建模的文档集合的半监督分析。该方法依赖于一个主管提供一组种子文件,按抽象主题分组,如施瓦茨价值观或人格特征;可能还有一个单独的背景文档语料库。我们没有将问题放入标准的分类框架中,而是将分组标签解释为寻找区别特征的指南。在训练过程中,我们使用非负矩阵分解法分别训练与主题相关的每组文档,以获得主题特定的主题分布。在分析中,我们使用训练期间学习的模型分解新文档,以获得主题分数。我们在两种心理测量分析理论(Schwartz和Big Five)上展示了我们的方法,并使用留一交叉验证法评估我们的Schwartz分数,并将Big Five分数与独立调查进行比较,后者的执行成本要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Psychometric Scoring of Document Collections
We describe a generic computational approach that can be used in developing methods for psychometric profiling. Our approach is based on semi-supervised analysis of document collections using topic modeling. The method depends on a supervisor providing a set of seed documents, grouped by abstract themes, such as Schwartz values or personality traits; and possibly a separate background document corpus. Instead of casting the problem into a standard classification framework, we interpret the group labels as a guide for finding distinguishing features. During training, we train each group of documents associated with a theme separately by using nonnegative matrix factorization to obtain theme specific topic distributions. In the analysis, we decompose a new document using the model learned during training to arrive at the theme scores. We demonstrate our approach on two psychometric profiling theories (Schwartz and Big Five) and evaluate our Schwartz scores with leave-one-out cross-validation method and compare Big Five scores to independent surveys, which are much more costly to carry out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信