通过Kuranishi结构的Gromov-Witten理论

M. Tehrani, K. Fukaya
{"title":"通过Kuranishi结构的Gromov-Witten理论","authors":"M. Tehrani, K. Fukaya","doi":"10.1090/surv/237/02","DOIUrl":null,"url":null,"abstract":"In this expository manuscript, we review the construction of Gromov-Witten virtual fundamental class via FOOO's theory of Kuranishi structures for moduli spaces of pseudo-holomorphic maps defined on closed Riemann surfaces. We consider constraints coming from the ambient space and Deligne-Mumford moduli, called primary insertions, as well as intrinsic classes such as $\\psi$-classes and Hodge classes.","PeriodicalId":422349,"journal":{"name":"Virtual Fundamental Cycles in Symplectic\n Topology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Gromov-Witten theory via Kuranishi\\n structures\",\"authors\":\"M. Tehrani, K. Fukaya\",\"doi\":\"10.1090/surv/237/02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this expository manuscript, we review the construction of Gromov-Witten virtual fundamental class via FOOO's theory of Kuranishi structures for moduli spaces of pseudo-holomorphic maps defined on closed Riemann surfaces. We consider constraints coming from the ambient space and Deligne-Mumford moduli, called primary insertions, as well as intrinsic classes such as $\\\\psi$-classes and Hodge classes.\",\"PeriodicalId\":422349,\"journal\":{\"name\":\"Virtual Fundamental Cycles in Symplectic\\n Topology\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Fundamental Cycles in Symplectic\\n Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/surv/237/02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Fundamental Cycles in Symplectic\n Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/surv/237/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在这篇解释性的手稿中,我们回顾了在闭黎曼曲面上定义的伪全纯映射的模空间上,利用FOOO的Kuranishi结构理论构造Gromov-Witten虚基类。我们考虑来自环境空间和Deligne-Mumford模的约束,称为主插入,以及固有类,如$\psi$-类和Hodge类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gromov-Witten theory via Kuranishi structures
In this expository manuscript, we review the construction of Gromov-Witten virtual fundamental class via FOOO's theory of Kuranishi structures for moduli spaces of pseudo-holomorphic maps defined on closed Riemann surfaces. We consider constraints coming from the ambient space and Deligne-Mumford moduli, called primary insertions, as well as intrinsic classes such as $\psi$-classes and Hodge classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信