学习使用部分可观察的马尔可夫决策过程控制以听力为导向的对话

Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka
{"title":"学习使用部分可观察的马尔可夫决策过程控制以听力为导向的对话","authors":"Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka","doi":"10.1145/2513145","DOIUrl":null,"url":null,"abstract":"Our aim is to build listening agents that attentively listen to their users and satisfy their desire to speak and have themselves heard. This article investigates how to automatically create a dialogue control component of such a listening agent. We collected a large number of listening-oriented dialogues with their user satisfaction ratings and used them to create a dialogue control component that satisfies users by means of Partially Observable Markov Decision Processes (POMDPs). Using a hybrid dialog controller where high-level dialog acts are chosen with a statistical policy and low-level slot values are populated by a wizard, we evaluated our dialogue control method in a Wizard-of-Oz experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This article is the first to verify, by using human users, the usefulness of POMDP-based dialogue control for improving user satisfaction in nontask-oriented dialogue systems.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Learning to control listening-oriented dialogue using partially observable markov decision processes\",\"authors\":\"Toyomi Meguro, Yasuhiro Minami, Ryuichiro Higashinaka, Kohji Dohsaka\",\"doi\":\"10.1145/2513145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim is to build listening agents that attentively listen to their users and satisfy their desire to speak and have themselves heard. This article investigates how to automatically create a dialogue control component of such a listening agent. We collected a large number of listening-oriented dialogues with their user satisfaction ratings and used them to create a dialogue control component that satisfies users by means of Partially Observable Markov Decision Processes (POMDPs). Using a hybrid dialog controller where high-level dialog acts are chosen with a statistical policy and low-level slot values are populated by a wizard, we evaluated our dialogue control method in a Wizard-of-Oz experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This article is the first to verify, by using human users, the usefulness of POMDP-based dialogue control for improving user satisfaction in nontask-oriented dialogue systems.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们的目标是建立倾听代理,专注地倾听他们的用户,满足他们说话和被倾听的愿望。本文研究如何自动创建这种侦听代理的对话控制组件。我们收集了大量的以听力为导向的对话及其用户满意度评级,并使用它们来创建一个对话控制组件,该组件通过部分可观察马尔可夫决策过程(pomdp)来满足用户。使用混合对话控制器,其中高级对话行为由统计策略选择,低级槽值由向导填充,我们在wizard -of- oz实验中评估了我们的对话控制方法。实验结果表明,基于pomdp的方法获得的用户满意度明显高于其他随机模型,验证了该方法的有效性。本文首次通过使用人类用户验证了基于pomdp的对话控制在非面向任务的对话系统中提高用户满意度的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to control listening-oriented dialogue using partially observable markov decision processes
Our aim is to build listening agents that attentively listen to their users and satisfy their desire to speak and have themselves heard. This article investigates how to automatically create a dialogue control component of such a listening agent. We collected a large number of listening-oriented dialogues with their user satisfaction ratings and used them to create a dialogue control component that satisfies users by means of Partially Observable Markov Decision Processes (POMDPs). Using a hybrid dialog controller where high-level dialog acts are chosen with a statistical policy and low-level slot values are populated by a wizard, we evaluated our dialogue control method in a Wizard-of-Oz experiment. The experimental results show that our POMDP-based method achieves significantly higher user satisfaction than other stochastic models, confirming the validity of our approach. This article is the first to verify, by using human users, the usefulness of POMDP-based dialogue control for improving user satisfaction in nontask-oriented dialogue systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信