随机优化

Bruno Hideki Fukushima-Kimura, Y. Kamijima, Kazushi Kawamura, Akira Sakai
{"title":"随机优化","authors":"Bruno Hideki Fukushima-Kimura, Y. Kamijima, Kazushi Kawamura, Akira Sakai","doi":"10.5687/iscie.36.9","DOIUrl":null,"url":null,"abstract":"The topic we address in this paper concerns the minimization of a Hamiltonian function for an Ising model through the application of simulated annealing algorithms based on (single-site) Glauber dynamics and stochastic cellular automata (SCA). Some rigorous results are presented in order to justify the application of simulated annealing for a particular kind of SCA. After that, we compare the SCA algorithm and its variation, namely the $\\varepsilon$-SCA algorithm, studied in this paper with the Glauber dynamics by analyzing their accuracy in obtaining optimal solutions for the max-cut problem on Erd\\H{o}s-R\\'enyi random graphs, the traveling salesman problem (TSP), and the minimization of Gaussian and Bernoulli spin glass Hamiltonians. We observed that the SCA performed better than the Glauber dynamics in some special cases, while the $\\varepsilon$-SCA showed the highest performance in all scenarios.","PeriodicalId":403477,"journal":{"name":"Transactions of the Institute of Systems, Control and Information Engineers","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Optimization\",\"authors\":\"Bruno Hideki Fukushima-Kimura, Y. Kamijima, Kazushi Kawamura, Akira Sakai\",\"doi\":\"10.5687/iscie.36.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topic we address in this paper concerns the minimization of a Hamiltonian function for an Ising model through the application of simulated annealing algorithms based on (single-site) Glauber dynamics and stochastic cellular automata (SCA). Some rigorous results are presented in order to justify the application of simulated annealing for a particular kind of SCA. After that, we compare the SCA algorithm and its variation, namely the $\\\\varepsilon$-SCA algorithm, studied in this paper with the Glauber dynamics by analyzing their accuracy in obtaining optimal solutions for the max-cut problem on Erd\\\\H{o}s-R\\\\'enyi random graphs, the traveling salesman problem (TSP), and the minimization of Gaussian and Bernoulli spin glass Hamiltonians. We observed that the SCA performed better than the Glauber dynamics in some special cases, while the $\\\\varepsilon$-SCA showed the highest performance in all scenarios.\",\"PeriodicalId\":403477,\"journal\":{\"name\":\"Transactions of the Institute of Systems, Control and Information Engineers\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Systems, Control and Information Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5687/iscie.36.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Systems, Control and Information Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5687/iscie.36.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论的主题是通过应用基于(单点)Glauber动力学和随机元胞自动机(SCA)的模拟退火算法来最小化Ising模型的哈密顿函数。给出了一些严谨的结果,以证明模拟退火对特定类型SCA的应用是正确的。然后,我们将SCA算法及其变体,即本文研究的$\varepsilon$-SCA算法与Glauber动力学进行了比较,分析了它们在Erd\H{o}s-R\ enyi随机图上的最大切问题、旅行商问题(TSP)以及高斯和伯努利自旋玻璃哈密顿量最小化问题上的最优解的准确性。我们观察到SCA在某些特殊情况下比Glauber动力学表现得更好,而$\varepsilon$-SCA在所有场景中表现出最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Optimization
The topic we address in this paper concerns the minimization of a Hamiltonian function for an Ising model through the application of simulated annealing algorithms based on (single-site) Glauber dynamics and stochastic cellular automata (SCA). Some rigorous results are presented in order to justify the application of simulated annealing for a particular kind of SCA. After that, we compare the SCA algorithm and its variation, namely the $\varepsilon$-SCA algorithm, studied in this paper with the Glauber dynamics by analyzing their accuracy in obtaining optimal solutions for the max-cut problem on Erd\H{o}s-R\'enyi random graphs, the traveling salesman problem (TSP), and the minimization of Gaussian and Bernoulli spin glass Hamiltonians. We observed that the SCA performed better than the Glauber dynamics in some special cases, while the $\varepsilon$-SCA showed the highest performance in all scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信