哈密顿偏微分方程在能量空间中的Birkhoff范式

J. Bernier, B. Gr'ebert
{"title":"哈密顿偏微分方程在能量空间中的Birkhoff范式","authors":"J. Bernier, B. Gr'ebert","doi":"10.5802/jep.193","DOIUrl":null,"url":null,"abstract":"We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schr{\\\"o}dinger equations in dimension d $\\le$ 2.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Birkhoff normal forms for Hamiltonian PDEs in their energy space\",\"authors\":\"J. Bernier, B. Gr'ebert\",\"doi\":\"10.5802/jep.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schr{\\\\\\\"o}dinger equations in dimension d $\\\\le$ 2.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了半线性色散哈密顿偏微分方程小解在受限域上的长时性。假设系统具有新的非共振条件和足够强的能量估计,我们证明了它的低超作用几乎保持了很长时间。粗略地说,这意味着要交换能量,模态必须以相同的频率振荡。与之前已有的结果相反,我们并不要求解特别光滑。它们只需要生活在能量空间。我们将所得结果应用于维数d = 1的非线性Klein-Gordon方程和维数d $\ \le$ 2的非线性Schr{\ \ ' o}dinger方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Birkhoff normal forms for Hamiltonian PDEs in their energy space
We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schr{\"o}dinger equations in dimension d $\le$ 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信