基于集成数据增强的改进神经网络心律失常分类

Garrett I. Cayce, Arthur C. Depoian, Colleen P. Bailey, P. Guturu
{"title":"基于集成数据增强的改进神经网络心律失常分类","authors":"Garrett I. Cayce, Arthur C. Depoian, Colleen P. Bailey, P. Guturu","doi":"10.1109/MetroCon56047.2022.9971141","DOIUrl":null,"url":null,"abstract":"This work investigates an evolution of verified recent advances to machine learning applied to electrocardiogram (ECG) data. The successful inference of heartbeat arrhythmia has long been a goal yet achieved, the techniques presented advance the worthy endeavor. The mutation of the training data through amplitude and time inversion creates artificial information leading to a more robust and accurate model in comparison to the current state of the art. Over a 5% reduction in accuracy error is reached with the proposed techniques in comparison to that of the base model.","PeriodicalId":292881,"journal":{"name":"2022 IEEE MetroCon","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Neural Network Arrhythmia Classification Through Integrated Data Augmentation\",\"authors\":\"Garrett I. Cayce, Arthur C. Depoian, Colleen P. Bailey, P. Guturu\",\"doi\":\"10.1109/MetroCon56047.2022.9971141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates an evolution of verified recent advances to machine learning applied to electrocardiogram (ECG) data. The successful inference of heartbeat arrhythmia has long been a goal yet achieved, the techniques presented advance the worthy endeavor. The mutation of the training data through amplitude and time inversion creates artificial information leading to a more robust and accurate model in comparison to the current state of the art. Over a 5% reduction in accuracy error is reached with the proposed techniques in comparison to that of the base model.\",\"PeriodicalId\":292881,\"journal\":{\"name\":\"2022 IEEE MetroCon\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MetroCon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroCon56047.2022.9971141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MetroCon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCon56047.2022.9971141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作调查了应用于心电图(ECG)数据的机器学习的最新进展。成功推断心律不齐是一个长期未实现的目标,所提出的技术提出了值得努力的方向。通过幅度和时间反演的训练数据的突变产生了人工信息,与目前的技术相比,产生了更鲁棒和更准确的模型。与基本模型相比,所提出的技术的精度误差降低了5%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Neural Network Arrhythmia Classification Through Integrated Data Augmentation
This work investigates an evolution of verified recent advances to machine learning applied to electrocardiogram (ECG) data. The successful inference of heartbeat arrhythmia has long been a goal yet achieved, the techniques presented advance the worthy endeavor. The mutation of the training data through amplitude and time inversion creates artificial information leading to a more robust and accurate model in comparison to the current state of the art. Over a 5% reduction in accuracy error is reached with the proposed techniques in comparison to that of the base model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信