基于区间值模糊集相似性度量选择相关特征的不确定数据分类

Barbara Pekala, Krzysztof Dyczkowski, Jaroslaw Szkola, Dawid Kosior
{"title":"基于区间值模糊集相似性度量选择相关特征的不确定数据分类","authors":"Barbara Pekala, Krzysztof Dyczkowski, Jaroslaw Szkola, Dawid Kosior","doi":"10.1109/FUZZ45933.2021.9494595","DOIUrl":null,"url":null,"abstract":"The article deals with the problem of selecting the most appropriate attributes for a given classification method with the use of inclusion and similarity measures for interval-valued fuzzy sets. These types of measures with uncertainty were introduced using partial or linear order. The article introduces a modified IV-Relief algorithm using the above-mentioned measures. The theoretical considerations were supported by the analysis of the effectiveness of the proposed algorithm on a well-known dataset on breast cancer diagnostics. The proposed methods make it possible to extend the recognized classification methods so that they operate on uncertain data.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of uncertain data with a selection of relevant features based on similarities measures of Interval-Valued Fuzzy Sets\",\"authors\":\"Barbara Pekala, Krzysztof Dyczkowski, Jaroslaw Szkola, Dawid Kosior\",\"doi\":\"10.1109/FUZZ45933.2021.9494595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the problem of selecting the most appropriate attributes for a given classification method with the use of inclusion and similarity measures for interval-valued fuzzy sets. These types of measures with uncertainty were introduced using partial or linear order. The article introduces a modified IV-Relief algorithm using the above-mentioned measures. The theoretical considerations were supported by the analysis of the effectiveness of the proposed algorithm on a well-known dataset on breast cancer diagnostics. The proposed methods make it possible to extend the recognized classification methods so that they operate on uncertain data.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了区间值模糊集的包含度量和相似度量在给定分类方法中选择最合适属性的问题。这些具有不确定性的测度是用偏序或线性序来引入的。本文介绍了一种利用上述措施改进的IV-Relief算法。在一个著名的乳腺癌诊断数据集上,对所提出算法的有效性进行了分析,支持了理论考虑。提出的方法可以扩展现有的分类方法,使其适用于不确定数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of uncertain data with a selection of relevant features based on similarities measures of Interval-Valued Fuzzy Sets
The article deals with the problem of selecting the most appropriate attributes for a given classification method with the use of inclusion and similarity measures for interval-valued fuzzy sets. These types of measures with uncertainty were introduced using partial or linear order. The article introduces a modified IV-Relief algorithm using the above-mentioned measures. The theoretical considerations were supported by the analysis of the effectiveness of the proposed algorithm on a well-known dataset on breast cancer diagnostics. The proposed methods make it possible to extend the recognized classification methods so that they operate on uncertain data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信