{"title":"利用对称秩一更新公式求非光滑复合函数极小化的近似牛顿型近端方法","authors":"Z. Aminifard, S. Babaie-Kafaki","doi":"10.1080/10556788.2022.2142587","DOIUrl":null,"url":null,"abstract":"Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions\",\"authors\":\"Z. Aminifard, S. Babaie-Kafaki\",\"doi\":\"10.1080/10556788.2022.2142587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2142587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions
Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.