利用对称秩一更新公式求非光滑复合函数极小化的近似牛顿型近端方法

Z. Aminifard, S. Babaie-Kafaki
{"title":"利用对称秩一更新公式求非光滑复合函数极小化的近似牛顿型近端方法","authors":"Z. Aminifard, S. Babaie-Kafaki","doi":"10.1080/10556788.2022.2142587","DOIUrl":null,"url":null,"abstract":"Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions\",\"authors\":\"Z. Aminifard, S. Babaie-Kafaki\",\"doi\":\"10.1080/10556788.2022.2142587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2142587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于缩放的无记忆对称1级更新公式,提出了最小化非光滑复合函数的近似牛顿型近端策略。更精确地说,为了逼近目标函数光滑部分的逆Hessian,采用对称的秩一矩阵直接计算一类已知函数的搜索方向。通过对相应的非光滑模型进行调整的非单调回溯线搜索,论证了该算法的收敛性。此外,它的实际优势在两个众所周知的现实世界模型中被计算描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximate Newton-type proximal method using symmetric rank-one updating formula for minimizing the nonsmooth composite functions
Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信