金融中偏微分方程解的近似

Akihiko Takahashi, T. Yamada
{"title":"金融中偏微分方程解的近似","authors":"Akihiko Takahashi, T. Yamada","doi":"10.2139/ssrn.1915024","DOIUrl":null,"url":null,"abstract":"This paper proposes a general approximation method for the solutions to second-order parabolic partial differential equations (PDEs) widely used in finance through an extension of L'eandre's approach(L'eandre (2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We show two types of its applications, new approximations of derivatives prices and short-time asymptotic expansions of the heat kernel. In particular, we provide new approximation formulas for plain-vanilla and barrier option prices under stochastic volatility models. We also derive short-time asymptotic expansions of the heat kernel under general time-homogenous local volatility and local-stochastic volatility models in finance which include Heston (Heston (1993)) and (ƒE-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special cases. Some numerical examples are shown.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Approximation of the Solutions to Partial Differential Equations in Finance\",\"authors\":\"Akihiko Takahashi, T. Yamada\",\"doi\":\"10.2139/ssrn.1915024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a general approximation method for the solutions to second-order parabolic partial differential equations (PDEs) widely used in finance through an extension of L'eandre's approach(L'eandre (2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We show two types of its applications, new approximations of derivatives prices and short-time asymptotic expansions of the heat kernel. In particular, we provide new approximation formulas for plain-vanilla and barrier option prices under stochastic volatility models. We also derive short-time asymptotic expansions of the heat kernel under general time-homogenous local volatility and local-stochastic volatility models in finance which include Heston (Heston (1993)) and (ƒE-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special cases. Some numerical examples are shown.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1915024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1915024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过推广L'eandre方法(L'eandre(2006,2008))和Bismut恒等式(例如:Malliavin微积分的第九章-第七章(1997)。我们展示了它的两种应用,衍生品价格的新近似和热核的短时间渐近展开式。特别地,我们给出了随机波动率模型下普通期权和障碍期权价格的新的近似公式。我们还推导了金融中一般时间同质局部波动率和局部随机波动率模型下热核的短时间渐近展开,包括Heston (Heston(1993))和(ƒE-)SABR模型(Hagan等)。(2002), Labordere(2008))作为特例。给出了一些数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Approximation of the Solutions to Partial Differential Equations in Finance
This paper proposes a general approximation method for the solutions to second-order parabolic partial differential equations (PDEs) widely used in finance through an extension of L'eandre's approach(L'eandre (2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We show two types of its applications, new approximations of derivatives prices and short-time asymptotic expansions of the heat kernel. In particular, we provide new approximation formulas for plain-vanilla and barrier option prices under stochastic volatility models. We also derive short-time asymptotic expansions of the heat kernel under general time-homogenous local volatility and local-stochastic volatility models in finance which include Heston (Heston (1993)) and (ƒE-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special cases. Some numerical examples are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信