磁的电压控制:低功率自旋电子学

Astha Khandelwal, R. Chopdekar, Akash Surampalli, K. Tiwari, Naveen Negi, A. Kalitsov, L. Wan, J. Katine, Derek Stewart, T. Santos, Yen-Lin Huang, R. Ramesh, B. Prasad
{"title":"磁的电压控制:低功率自旋电子学","authors":"Astha Khandelwal, R. Chopdekar, Akash Surampalli, K. Tiwari, Naveen Negi, A. Kalitsov, L. Wan, J. Katine, Derek Stewart, T. Santos, Yen-Lin Huang, R. Ramesh, B. Prasad","doi":"10.1109/IMW56887.2023.10145821","DOIUrl":null,"url":null,"abstract":"Conventional spintronics-based memory devices use an electrical current in elegant ways to control the direction and dynamics of electrons’ spin, yet at higher energy cost and lower device endurance. Therefore, keeping pace with the growing demand for faster, smaller, and ultra-low-power electronic devices, research in the field of voltage control of magnetism has intensified recently with the promises to deliver ultra-low-power operating non-volatile memory solutions for next-generation computing systems. Here, we present our recent efforts in voltage-controlled magnetism via different approaches; voltage-controlled magnetic anisotropy (VCMA), voltage-controlled exchange coupling (VCEC), and multiferroic-based magnetoelectric coupling (MEC) for spintronics applications. These studies yielded several new findings. Large tunability of perpendicular magnetic anisotropy (PMA) has been achieved with the insertion of the Pt layer at the MgO/Ferromagnet interface. The modulation of the interlayer exchange coupling with the Ru spacer layer has been demonstrated by using non-ionic liquid gating such as MgO. Besides this, we have also shown the modulation of the magnetism by utilizing the magneto-electric coupling effect in a bismuth ferrite-based multiferroic system. These efforts provide several routes to modulate the resistance states of spintronic devices at low power and bring forth a vast playground to develop next-generation energy-efficient computing devices.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage Control of Magnetism: Low-Power Spintronics\",\"authors\":\"Astha Khandelwal, R. Chopdekar, Akash Surampalli, K. Tiwari, Naveen Negi, A. Kalitsov, L. Wan, J. Katine, Derek Stewart, T. Santos, Yen-Lin Huang, R. Ramesh, B. Prasad\",\"doi\":\"10.1109/IMW56887.2023.10145821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional spintronics-based memory devices use an electrical current in elegant ways to control the direction and dynamics of electrons’ spin, yet at higher energy cost and lower device endurance. Therefore, keeping pace with the growing demand for faster, smaller, and ultra-low-power electronic devices, research in the field of voltage control of magnetism has intensified recently with the promises to deliver ultra-low-power operating non-volatile memory solutions for next-generation computing systems. Here, we present our recent efforts in voltage-controlled magnetism via different approaches; voltage-controlled magnetic anisotropy (VCMA), voltage-controlled exchange coupling (VCEC), and multiferroic-based magnetoelectric coupling (MEC) for spintronics applications. These studies yielded several new findings. Large tunability of perpendicular magnetic anisotropy (PMA) has been achieved with the insertion of the Pt layer at the MgO/Ferromagnet interface. The modulation of the interlayer exchange coupling with the Ru spacer layer has been demonstrated by using non-ionic liquid gating such as MgO. Besides this, we have also shown the modulation of the magnetism by utilizing the magneto-electric coupling effect in a bismuth ferrite-based multiferroic system. These efforts provide several routes to modulate the resistance states of spintronic devices at low power and bring forth a vast playground to develop next-generation energy-efficient computing devices.\",\"PeriodicalId\":153429,\"journal\":{\"name\":\"2023 IEEE International Memory Workshop (IMW)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW56887.2023.10145821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的基于自旋电子学的存储设备以一种优雅的方式使用电流来控制电子自旋的方向和动力学,但能量成本较高,设备耐用性较低。因此,为了跟上对更快、更小、超低功耗电子设备不断增长的需求,磁性电压控制领域的研究最近加强了,承诺为下一代计算系统提供超低功耗操作非易失性存储器解决方案。在这里,我们通过不同的方法介绍了我们最近在电压控制磁性方面的努力;压控磁各向异性(VCMA)、压控交换耦合(VCEC)和多铁性磁电耦合(MEC)在自旋电子学中的应用。这些研究产生了一些新的发现。在MgO/铁磁体界面处插入Pt层,实现了垂直磁各向异性(PMA)的大可调性。利用非离子液体门控(如MgO)证明了层间交换耦合与Ru间隔层的调制作用。此外,我们还展示了在铋铁氧体基多铁性体系中利用磁电耦合效应对磁性的调制。这些努力提供了几种途径来调制自旋电子器件在低功率下的电阻状态,并为开发下一代节能计算设备提供了广阔的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage Control of Magnetism: Low-Power Spintronics
Conventional spintronics-based memory devices use an electrical current in elegant ways to control the direction and dynamics of electrons’ spin, yet at higher energy cost and lower device endurance. Therefore, keeping pace with the growing demand for faster, smaller, and ultra-low-power electronic devices, research in the field of voltage control of magnetism has intensified recently with the promises to deliver ultra-low-power operating non-volatile memory solutions for next-generation computing systems. Here, we present our recent efforts in voltage-controlled magnetism via different approaches; voltage-controlled magnetic anisotropy (VCMA), voltage-controlled exchange coupling (VCEC), and multiferroic-based magnetoelectric coupling (MEC) for spintronics applications. These studies yielded several new findings. Large tunability of perpendicular magnetic anisotropy (PMA) has been achieved with the insertion of the Pt layer at the MgO/Ferromagnet interface. The modulation of the interlayer exchange coupling with the Ru spacer layer has been demonstrated by using non-ionic liquid gating such as MgO. Besides this, we have also shown the modulation of the magnetism by utilizing the magneto-electric coupling effect in a bismuth ferrite-based multiferroic system. These efforts provide several routes to modulate the resistance states of spintronic devices at low power and bring forth a vast playground to develop next-generation energy-efficient computing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信