{"title":"用于稳定核聚变装置磁流体动力模式的快速模型预测控制器的设计与运行","authors":"A. Setiadi, P. Brunsell, L. Frassinetti","doi":"10.1109/CDC.2015.7403379","DOIUrl":null,"url":null,"abstract":"Magnetic confinement fusion (MCF) devices suffer from magnetohydrodynamic (MHD) instabilities. A particular unstable mode, known as the resistive wall mode (RWM), is treated in this work. The RWM perturbs the plasma globally and can degrade the confinement or even terminate the plasma if not stabilized. This paper presents a control design approach to stabilize the RWM in the reversed-field pinch (RFP). The approach consists of: closed-loop system identification of the RFP, design of a fast model predictive controller and experimental validation of the controller. Experimental results shows that the proposed controller manages to stabilize the RWM in plasma.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and operation of fast model predictive controller for stabilization of magnetohydrodynamic modes in a fusion device\",\"authors\":\"A. Setiadi, P. Brunsell, L. Frassinetti\",\"doi\":\"10.1109/CDC.2015.7403379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic confinement fusion (MCF) devices suffer from magnetohydrodynamic (MHD) instabilities. A particular unstable mode, known as the resistive wall mode (RWM), is treated in this work. The RWM perturbs the plasma globally and can degrade the confinement or even terminate the plasma if not stabilized. This paper presents a control design approach to stabilize the RWM in the reversed-field pinch (RFP). The approach consists of: closed-loop system identification of the RFP, design of a fast model predictive controller and experimental validation of the controller. Experimental results shows that the proposed controller manages to stabilize the RWM in plasma.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7403379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and operation of fast model predictive controller for stabilization of magnetohydrodynamic modes in a fusion device
Magnetic confinement fusion (MCF) devices suffer from magnetohydrodynamic (MHD) instabilities. A particular unstable mode, known as the resistive wall mode (RWM), is treated in this work. The RWM perturbs the plasma globally and can degrade the confinement or even terminate the plasma if not stabilized. This paper presents a control design approach to stabilize the RWM in the reversed-field pinch (RFP). The approach consists of: closed-loop system identification of the RFP, design of a fast model predictive controller and experimental validation of the controller. Experimental results shows that the proposed controller manages to stabilize the RWM in plasma.