n阶导数

SIGSAM Bull. Pub Date : 2002-03-01 DOI:10.1145/565145.565149
Mhenni M. Benghorbal, Robert M Corless
{"title":"n阶导数","authors":"Mhenni M. Benghorbal, Robert M Corless","doi":"10.1145/565145.565149","DOIUrl":null,"url":null,"abstract":"The following problem is one that many first year calculus students find quite difficult:Given a formula for a function <i>f</i> in a variable <i>x,</i> find a formula for its <i>n</i>th derivative.<b>Example 1.1:</b> [1, p. 229] If<i>f</i>(<i>x</i>) = <i>x<sup>m</sup>,</i> (1)then its <i>n</i>th derivative is<i>f</i><sup>(<i>n</i>)</sup> (<i>x</i>) = <i>m-<sup>n</sup>x<sup>m-n</sup>,</i> (2)where<i>m-<sup>n</sup> = m</i>(<i>m</i> - 1) (<i>m</i> - 2) ṡṡṡ (<i>m - n</i> + 1).The difficulties for students include, first, the discovery of a formula valid for all integers <i>n</i> and, second, the proof (for example, by induction) that the formula is correct. Can computer algebra systems do better?It is certain that Macsyma could (we remember commands for infinite Taylor series expansion of elementary functions, and that necessarily involves discovering a correct formula for the <i>n</i>th derivative of the input). Currently, Maple cannot---at least, not without help, just with one command, now that the Formal Power Series package in the share library is no longer supported.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The nth derivative\",\"authors\":\"Mhenni M. Benghorbal, Robert M Corless\",\"doi\":\"10.1145/565145.565149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following problem is one that many first year calculus students find quite difficult:Given a formula for a function <i>f</i> in a variable <i>x,</i> find a formula for its <i>n</i>th derivative.<b>Example 1.1:</b> [1, p. 229] If<i>f</i>(<i>x</i>) = <i>x<sup>m</sup>,</i> (1)then its <i>n</i>th derivative is<i>f</i><sup>(<i>n</i>)</sup> (<i>x</i>) = <i>m-<sup>n</sup>x<sup>m-n</sup>,</i> (2)where<i>m-<sup>n</sup> = m</i>(<i>m</i> - 1) (<i>m</i> - 2) ṡṡṡ (<i>m - n</i> + 1).The difficulties for students include, first, the discovery of a formula valid for all integers <i>n</i> and, second, the proof (for example, by induction) that the formula is correct. Can computer algebra systems do better?It is certain that Macsyma could (we remember commands for infinite Taylor series expansion of elementary functions, and that necessarily involves discovering a correct formula for the <i>n</i>th derivative of the input). Currently, Maple cannot---at least, not without help, just with one command, now that the Formal Power Series package in the share library is no longer supported.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/565145.565149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/565145.565149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

下面的问题是很多一年级的微积分学生觉得很困难的一个问题:给定一个变量为x的函数f的公式,找出它的n阶导数的公式。例1.1:[1,p. 229]如果(x) = xm,(1),那么它的n阶导数是f(n) (x) = m-nxm-n,(2),其中-n = m(m - 1) (m - 2) ṡṡṡ (m -n + 1)。学生的困难包括,首先,发现一个对所有整数n有效的公式,其次,证明(例如,通过归纳法)公式是正确的。计算机代数系统能做得更好吗?可以肯定的是,Macsyma可以(我们还记得初等函数无限泰勒级数展开的命令,这必然涉及到为输入的n阶导数找到一个正确的公式)。目前,由于共享库中的Formal Power Series包不再受支持,因此Maple不能——至少不是没有帮助,只需要一个命令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nth derivative
The following problem is one that many first year calculus students find quite difficult:Given a formula for a function f in a variable x, find a formula for its nth derivative.Example 1.1: [1, p. 229] Iff(x) = xm, (1)then its nth derivative isf(n) (x) = m-nxm-n, (2)wherem-n = m(m - 1) (m - 2) ṡṡṡ (m - n + 1).The difficulties for students include, first, the discovery of a formula valid for all integers n and, second, the proof (for example, by induction) that the formula is correct. Can computer algebra systems do better?It is certain that Macsyma could (we remember commands for infinite Taylor series expansion of elementary functions, and that necessarily involves discovering a correct formula for the nth derivative of the input). Currently, Maple cannot---at least, not without help, just with one command, now that the Formal Power Series package in the share library is no longer supported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信