EquiTensors

A. Yan, Bill Howe
{"title":"EquiTensors","authors":"A. Yan, Bill Howe","doi":"10.1145/3448016.3452777","DOIUrl":null,"url":null,"abstract":"Neural methods are state-of-the-art for urban prediction problems such as transportation resource demand, accident risk, crowd mobility, and public safety. Model performance can be improved by integrating exogenous features from open data repositories (e.g., weather, housing prices, traffic, etc.), but these uncurated sources are often too noisy, incomplete, and biased to use directly. We propose to learn integrated representations, called EquiTensors, from heterogeneous datasets that can be reused across a variety of tasks. We align datasets to a consistent spatio-temporal domain, then describe an unsupervised model based on convolutional denoising autoencoders to learn shared representations. We extend this core integrative model with adaptive weighting to prevent certain datasets from dominating the signal. To combat discriminatory bias, we use adversarial learning to remove correlations with a sensitive attribute (e.g., race or income). Experiments with 23 input datasets and 4 real applications show that EquiTensors could help mitigate the effects of the sensitive information embodied in the biased data. Meanwhile, applications using EquiTensors outperform models that ignore exogenous features and are competitive with \"oracle\" models that use hand-selected datasets.","PeriodicalId":360379,"journal":{"name":"Proceedings of the 2021 International Conference on Management of Data","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EquiTensors\",\"authors\":\"A. Yan, Bill Howe\",\"doi\":\"10.1145/3448016.3452777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural methods are state-of-the-art for urban prediction problems such as transportation resource demand, accident risk, crowd mobility, and public safety. Model performance can be improved by integrating exogenous features from open data repositories (e.g., weather, housing prices, traffic, etc.), but these uncurated sources are often too noisy, incomplete, and biased to use directly. We propose to learn integrated representations, called EquiTensors, from heterogeneous datasets that can be reused across a variety of tasks. We align datasets to a consistent spatio-temporal domain, then describe an unsupervised model based on convolutional denoising autoencoders to learn shared representations. We extend this core integrative model with adaptive weighting to prevent certain datasets from dominating the signal. To combat discriminatory bias, we use adversarial learning to remove correlations with a sensitive attribute (e.g., race or income). Experiments with 23 input datasets and 4 real applications show that EquiTensors could help mitigate the effects of the sensitive information embodied in the biased data. Meanwhile, applications using EquiTensors outperform models that ignore exogenous features and are competitive with \\\"oracle\\\" models that use hand-selected datasets.\",\"PeriodicalId\":360379,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Management of Data\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448016.3452777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448016.3452777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
EquiTensors
Neural methods are state-of-the-art for urban prediction problems such as transportation resource demand, accident risk, crowd mobility, and public safety. Model performance can be improved by integrating exogenous features from open data repositories (e.g., weather, housing prices, traffic, etc.), but these uncurated sources are often too noisy, incomplete, and biased to use directly. We propose to learn integrated representations, called EquiTensors, from heterogeneous datasets that can be reused across a variety of tasks. We align datasets to a consistent spatio-temporal domain, then describe an unsupervised model based on convolutional denoising autoencoders to learn shared representations. We extend this core integrative model with adaptive weighting to prevent certain datasets from dominating the signal. To combat discriminatory bias, we use adversarial learning to remove correlations with a sensitive attribute (e.g., race or income). Experiments with 23 input datasets and 4 real applications show that EquiTensors could help mitigate the effects of the sensitive information embodied in the biased data. Meanwhile, applications using EquiTensors outperform models that ignore exogenous features and are competitive with "oracle" models that use hand-selected datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信