用遗传算法学习半监督支持向量机

M. M. Adankon, M. Cheriet
{"title":"用遗传算法学习半监督支持向量机","authors":"M. M. Adankon, M. Cheriet","doi":"10.1109/IJCNN.2007.4371235","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is an interesting classifier that has an excellent power of generalization. In this paper, we consider SVM in semi-supervised learning. We propose to use an additional criterion with the standard formulation of the transductive SVM for reinforcing the classifier regularization. Also, we use a genetic algorithm for optimizing the objective function, since the transductive SVM yields a non-convex problem. We tested our algorithm on artificial and real data, which gives promising results in comparison with Joachims' algorithm known as SVMlight TSVM.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning Semi-supervised SVM with Genetic Algorithm\",\"authors\":\"M. M. Adankon, M. Cheriet\",\"doi\":\"10.1109/IJCNN.2007.4371235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is an interesting classifier that has an excellent power of generalization. In this paper, we consider SVM in semi-supervised learning. We propose to use an additional criterion with the standard formulation of the transductive SVM for reinforcing the classifier regularization. Also, we use a genetic algorithm for optimizing the objective function, since the transductive SVM yields a non-convex problem. We tested our algorithm on artificial and real data, which gives promising results in comparison with Joachims' algorithm known as SVMlight TSVM.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4371235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

支持向量机(SVM)是一种有趣的分类器,具有出色的泛化能力。本文考虑支持向量机在半监督学习中的应用。我们建议使用一个附加的准则与标准表述的传导支持向量机来加强分类器的正则化。此外,我们使用遗传算法来优化目标函数,因为转换支持向量机产生一个非凸问题。我们在人工数据和真实数据上测试了我们的算法,与Joachims的算法(称为SVMlight TSVM)相比,给出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Semi-supervised SVM with Genetic Algorithm
Support vector machine (SVM) is an interesting classifier that has an excellent power of generalization. In this paper, we consider SVM in semi-supervised learning. We propose to use an additional criterion with the standard formulation of the transductive SVM for reinforcing the classifier regularization. Also, we use a genetic algorithm for optimizing the objective function, since the transductive SVM yields a non-convex problem. We tested our algorithm on artificial and real data, which gives promising results in comparison with Joachims' algorithm known as SVMlight TSVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信