磁化织构与平面磁性纳米结构中自旋波与微波磁场的相互作用

J. Kłos, M. Krawczyk, S. Mieszczak, P. Gruszecki
{"title":"磁化织构与平面磁性纳米结构中自旋波与微波磁场的相互作用","authors":"J. Kłos, M. Krawczyk, S. Mieszczak, P. Gruszecki","doi":"10.1109/comcas52219.2021.9629033","DOIUrl":null,"url":null,"abstract":"The magnetic microwave field is accompanying the magnetization precession in magnetic materials. However, the precessional dynamics can propagate in the form of the dipolar spin wave only if the magnetic field can effectively mediate the coupling between the magnetic moments at the distance. We refer to counter-intuitive but well known effect - the absence of the dynamic dipolar coupling in an unconstrained and uniformly magnetized medium, to stress the role of the confined geometries and magnetization textures for shaping the dipolar interaction and molding the propagation of the dipolar spin waves. The paper discusses the electromagnetic origin of the dipolar spin waves and explains the role of magnetostatic approximation. Within this approximation, we can introduce the concept of magnetostatic potential, which is very useful for describing of the origin of the dynamic demagnetizing field providing the coupling for the dipolar spin waves.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"23 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay between spin waves and microwave magnetic field in magnetization textures and planar magnetic nanostructures\",\"authors\":\"J. Kłos, M. Krawczyk, S. Mieszczak, P. Gruszecki\",\"doi\":\"10.1109/comcas52219.2021.9629033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic microwave field is accompanying the magnetization precession in magnetic materials. However, the precessional dynamics can propagate in the form of the dipolar spin wave only if the magnetic field can effectively mediate the coupling between the magnetic moments at the distance. We refer to counter-intuitive but well known effect - the absence of the dynamic dipolar coupling in an unconstrained and uniformly magnetized medium, to stress the role of the confined geometries and magnetization textures for shaping the dipolar interaction and molding the propagation of the dipolar spin waves. The paper discusses the electromagnetic origin of the dipolar spin waves and explains the role of magnetostatic approximation. Within this approximation, we can introduce the concept of magnetostatic potential, which is very useful for describing of the origin of the dynamic demagnetizing field providing the coupling for the dipolar spin waves.\",\"PeriodicalId\":354885,\"journal\":{\"name\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"23 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/comcas52219.2021.9629033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁微波场伴随着磁性材料的磁化进动。然而,只有当磁场能够有效地介导距离磁矩之间的耦合时,进动才能以偶极自旋波的形式传播。我们引用了反直觉但众所周知的效应-在无约束和均匀磁化的介质中缺乏动态偶极耦合,以强调限制几何形状和磁化结构在塑造偶极相互作用和塑造偶极自旋波传播中的作用。本文讨论了偶极自旋波的电磁来源,并说明了静磁近似的作用。在这个近似中,我们可以引入静磁势的概念,它对于描述提供偶极自旋波耦合的动态退磁场的起源非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interplay between spin waves and microwave magnetic field in magnetization textures and planar magnetic nanostructures
The magnetic microwave field is accompanying the magnetization precession in magnetic materials. However, the precessional dynamics can propagate in the form of the dipolar spin wave only if the magnetic field can effectively mediate the coupling between the magnetic moments at the distance. We refer to counter-intuitive but well known effect - the absence of the dynamic dipolar coupling in an unconstrained and uniformly magnetized medium, to stress the role of the confined geometries and magnetization textures for shaping the dipolar interaction and molding the propagation of the dipolar spin waves. The paper discusses the electromagnetic origin of the dipolar spin waves and explains the role of magnetostatic approximation. Within this approximation, we can introduce the concept of magnetostatic potential, which is very useful for describing of the origin of the dynamic demagnetizing field providing the coupling for the dipolar spin waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信