鲁棒加权粗到细稀疏跟踪

Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Y. Xie, Shujian Yu
{"title":"鲁棒加权粗到细稀疏跟踪","authors":"Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Y. Xie, Shujian Yu","doi":"10.1109/SPAC.2014.6982648","DOIUrl":null,"url":null,"abstract":"Particle filter and sparse representation have been successfully applied to visual tracking in computer vision community. This paper proposes an adaptive weighted coarse-to-fine sparse tracking(WCFT) method based on particle filter framework. In this method, two series of templates, coarse templates and fine templates, are used to represent two different stages of human vision perception process respectively. Besides, the regularization parameter(weight) of each template is adapted according to its significance in representing the target. We also prove that our problem can be solved using an accelerated proximal gradient(APG) method. Moreover, we prove that the outstanding L1 tracker is a special case of our model and our method is more effective and efficient in general. The superiority of our system over current state-of-art tracking methods is demonstrated by a set of comprehensive experiments on public data sets.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust weighted coarse-to-fine sparse tracking\",\"authors\":\"Boxuan Zhong, Zijing Chen, Xinge You, Luoqing Li, Y. Xie, Shujian Yu\",\"doi\":\"10.1109/SPAC.2014.6982648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filter and sparse representation have been successfully applied to visual tracking in computer vision community. This paper proposes an adaptive weighted coarse-to-fine sparse tracking(WCFT) method based on particle filter framework. In this method, two series of templates, coarse templates and fine templates, are used to represent two different stages of human vision perception process respectively. Besides, the regularization parameter(weight) of each template is adapted according to its significance in representing the target. We also prove that our problem can be solved using an accelerated proximal gradient(APG) method. Moreover, we prove that the outstanding L1 tracker is a special case of our model and our method is more effective and efficient in general. The superiority of our system over current state-of-art tracking methods is demonstrated by a set of comprehensive experiments on public data sets.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子滤波和稀疏表示已经成功地应用于计算机视觉领域的视觉跟踪。提出了一种基于粒子滤波框架的自适应加权粗到细稀疏跟踪方法。该方法采用粗模板和精模板两组模板分别代表人类视觉感知过程的两个不同阶段。此外,每个模板的正则化参数(权值)根据其在表示目标中的重要程度进行调整。我们还证明了我们的问题可以用加速近端梯度(APG)方法来解决。此外,我们证明了优秀的L1跟踪器是我们模型的一个特例,我们的方法在一般情况下更有效和高效。在公共数据集上进行的一组综合实验证明了我们的系统优于当前最先进的跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust weighted coarse-to-fine sparse tracking
Particle filter and sparse representation have been successfully applied to visual tracking in computer vision community. This paper proposes an adaptive weighted coarse-to-fine sparse tracking(WCFT) method based on particle filter framework. In this method, two series of templates, coarse templates and fine templates, are used to represent two different stages of human vision perception process respectively. Besides, the regularization parameter(weight) of each template is adapted according to its significance in representing the target. We also prove that our problem can be solved using an accelerated proximal gradient(APG) method. Moreover, we prove that the outstanding L1 tracker is a special case of our model and our method is more effective and efficient in general. The superiority of our system over current state-of-art tracking methods is demonstrated by a set of comprehensive experiments on public data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信