从随机矩阵到通过高斯正交的蒙特卡罗积分

R. Bardenet, A. Hardy
{"title":"从随机矩阵到通过高斯正交的蒙特卡罗积分","authors":"R. Bardenet, A. Hardy","doi":"10.1109/SSP.2018.8450783","DOIUrl":null,"url":null,"abstract":"We introduced in [1] a new Monte Carlo estimator that relies on determinantal point processes (DPPs). We were initially motivated by peculiar properties of results from random matrix theory. This motivation is absent from the original paper [1], so we develop it here. Then, we give a non-technical overview of the contents of [1], insisting on points that may be of interest to the statistical signal processing audience.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"26 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Random Matrices to Monte Carlo Integration Via Gaussian Quadrature\",\"authors\":\"R. Bardenet, A. Hardy\",\"doi\":\"10.1109/SSP.2018.8450783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduced in [1] a new Monte Carlo estimator that relies on determinantal point processes (DPPs). We were initially motivated by peculiar properties of results from random matrix theory. This motivation is absent from the original paper [1], so we develop it here. Then, we give a non-technical overview of the contents of [1], insisting on points that may be of interest to the statistical signal processing audience.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"26 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在[1]中引入了一种新的蒙特卡罗估计器,它依赖于确定性点过程(DPPs)。我们最初的动机是随机矩阵理论结果的特殊性质。这个动机在原始论文[1]中是不存在的,所以我们在这里开发它。然后,我们给出[1]内容的非技术概述,坚持统计信号处理受众可能感兴趣的要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Random Matrices to Monte Carlo Integration Via Gaussian Quadrature
We introduced in [1] a new Monte Carlo estimator that relies on determinantal point processes (DPPs). We were initially motivated by peculiar properties of results from random matrix theory. This motivation is absent from the original paper [1], so we develop it here. Then, we give a non-technical overview of the contents of [1], insisting on points that may be of interest to the statistical signal processing audience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信