Toeplitz系统的最优循环预调节器

T. Chan
{"title":"Toeplitz系统的最优循环预调节器","authors":"T. Chan","doi":"10.1137/0909051","DOIUrl":null,"url":null,"abstract":"Given a Toeplitz matrix A, we derive an optimal circulant preconditioner C in the sense of minimizing ${\\|C - A\\|}_F $. It is in general different from the one proposed earlier by Strang [“A proposal for Toeplitz matrix calculations,” Stud. Appl. Math., 74(1986), pp. 171–176], except in the case when A is itself circulant. The new preconditioner is easy to compute and in preliminary numerical experiments performs better than Strang's preconditioner in terms of reducing the condition number of $C^{ - 1} A$ and comparably in terms of clustering the spectrum around unity.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"557","resultStr":"{\"title\":\"An Optimal Circulant Preconditioner for Toeplitz Systems\",\"authors\":\"T. Chan\",\"doi\":\"10.1137/0909051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a Toeplitz matrix A, we derive an optimal circulant preconditioner C in the sense of minimizing ${\\\\|C - A\\\\|}_F $. It is in general different from the one proposed earlier by Strang [“A proposal for Toeplitz matrix calculations,” Stud. Appl. Math., 74(1986), pp. 171–176], except in the case when A is itself circulant. The new preconditioner is easy to compute and in preliminary numerical experiments performs better than Strang's preconditioner in terms of reducing the condition number of $C^{ - 1} A$ and comparably in terms of clustering the spectrum around unity.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"557\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0909051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 557

摘要

给定一个Toeplitz矩阵a,在最小化${\|C - a \|}_F $的意义上,我们得到了一个最优循环预条件C。总的来说,它不同于Strang早先提出的[A proposal for Toeplitz matrix computation], Stud。达成。数学。, 74(1986),第171-176页],但A本身是循环的情况除外。新的预条件易于计算,在初步的数值实验中,在减少$C^{- 1} A$的条件数方面优于Strang预条件,在围绕单位的谱聚类方面也优于Strang预条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Circulant Preconditioner for Toeplitz Systems
Given a Toeplitz matrix A, we derive an optimal circulant preconditioner C in the sense of minimizing ${\|C - A\|}_F $. It is in general different from the one proposed earlier by Strang [“A proposal for Toeplitz matrix calculations,” Stud. Appl. Math., 74(1986), pp. 171–176], except in the case when A is itself circulant. The new preconditioner is easy to compute and in preliminary numerical experiments performs better than Strang's preconditioner in terms of reducing the condition number of $C^{ - 1} A$ and comparably in terms of clustering the spectrum around unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信