{"title":"QuantCloud:一个带有自动并行Python的定量金融应用软件","authors":"P. Zhang, Yu-Xiang Gao, Xiang Shi","doi":"10.1109/QRS.2018.00052","DOIUrl":null,"url":null,"abstract":"Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QuantCloud: A Software with Automated Parallel Python for Quantitative Finance Applications\",\"authors\":\"P. Zhang, Yu-Xiang Gao, Xiang Shi\",\"doi\":\"10.1109/QRS.2018.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.\",\"PeriodicalId\":114973,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS.2018.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QuantCloud: A Software with Automated Parallel Python for Quantitative Finance Applications
Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.