小描述的计算复杂度

Ricard Gavaldà, O. Watanabe
{"title":"小描述的计算复杂度","authors":"Ricard Gavaldà, O. Watanabe","doi":"10.1109/SCT.1991.160247","DOIUrl":null,"url":null,"abstract":"For a set L that is polynomial time reducible to some sparse set, the authors investigate the computational complexity of such sparse sets relative to L. They construct sets A and B such that both of them are polynomial time reducible to some sparse set, but A (resp., B) is polynomial time reducible to no sparse set in P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/); that is, the complexity of sparse sets to which A (resp., B) is reducible is more than P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/). From these results and/or application of their proof technique the authors obtain: (1) lower bounds for the relative complexity of finding polynomial size circuits for some sets in P/poly, and (2) separations of the equivalence classes of sparse sets under various reducibilities.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"On the computational complexity of small descriptions\",\"authors\":\"Ricard Gavaldà, O. Watanabe\",\"doi\":\"10.1109/SCT.1991.160247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a set L that is polynomial time reducible to some sparse set, the authors investigate the computational complexity of such sparse sets relative to L. They construct sets A and B such that both of them are polynomial time reducible to some sparse set, but A (resp., B) is polynomial time reducible to no sparse set in P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/); that is, the complexity of sparse sets to which A (resp., B) is reducible is more than P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/). From these results and/or application of their proof technique the authors obtain: (1) lower bounds for the relative complexity of finding polynomial size circuits for some sets in P/poly, and (2) separations of the equivalence classes of sparse sets under various reducibilities.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

对于多项式时间可约为某一稀疏集的集合L,研究了其相对于L的计算复杂度。他们构造了集合a和B,使得它们都是多项式时间可约为某一稀疏集,但a (p. 1)是可约的。, B)是多项式时间可约到P/sup中的无稀疏集A/ (resp)。, NP/sup B/交集co-NP/sup B/);即,A (p)对应的稀疏集的复杂度。, B)可约性大于P/sup A/ (P/sup)。, NP/sup B/交集co-NP/sup B/)。从这些结果和/或他们的证明技术的应用中,作者得到:(1)P/poly中某些集寻找多项式大小电路的相对复杂度的下界,以及(2)各种可约性下稀疏集等价类的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the computational complexity of small descriptions
For a set L that is polynomial time reducible to some sparse set, the authors investigate the computational complexity of such sparse sets relative to L. They construct sets A and B such that both of them are polynomial time reducible to some sparse set, but A (resp., B) is polynomial time reducible to no sparse set in P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/); that is, the complexity of sparse sets to which A (resp., B) is reducible is more than P/sup A/ (resp., NP/sup B/ intersection co-NP/sup B/). From these results and/or application of their proof technique the authors obtain: (1) lower bounds for the relative complexity of finding polynomial size circuits for some sets in P/poly, and (2) separations of the equivalence classes of sparse sets under various reducibilities.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信