{"title":"利用元数据来识别本地的、健壮的多变量时态(RMT)特征","authors":"Xiaolan Wang, K. Candan, M. Sapino","doi":"10.1109/ICDE.2014.6816667","DOIUrl":null,"url":null,"abstract":"Many applications generate and/or consume multi-variate temporal data, yet experts often lack the means to adequately and systematically search for and interpret multi-variate observations. In this paper, we first observe that multi-variate time series often carry localized multi-variate temporal features that are robust against noise. We then argue that these multi-variate temporal features can be extracted by simultaneously considering, at multiple scales, temporal characteristics of the time-series along with external knowledge, including variate relationships, known a priori. Relying on these observations, we develop algorithms to detect robust multi-variate temporal (RMT) features which can be indexed for efficient and accurate retrieval and can be used for supporting analysis tasks, such as classification. Experiments confirm that the proposed RMT algorithm is highly effective and efficient in identifying robust multi-scale temporal features of multi-variate time series.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Leveraging metadata for identifying local, robust multi-variate temporal (RMT) features\",\"authors\":\"Xiaolan Wang, K. Candan, M. Sapino\",\"doi\":\"10.1109/ICDE.2014.6816667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications generate and/or consume multi-variate temporal data, yet experts often lack the means to adequately and systematically search for and interpret multi-variate observations. In this paper, we first observe that multi-variate time series often carry localized multi-variate temporal features that are robust against noise. We then argue that these multi-variate temporal features can be extracted by simultaneously considering, at multiple scales, temporal characteristics of the time-series along with external knowledge, including variate relationships, known a priori. Relying on these observations, we develop algorithms to detect robust multi-variate temporal (RMT) features which can be indexed for efficient and accurate retrieval and can be used for supporting analysis tasks, such as classification. Experiments confirm that the proposed RMT algorithm is highly effective and efficient in identifying robust multi-scale temporal features of multi-variate time series.\",\"PeriodicalId\":159130,\"journal\":{\"name\":\"2014 IEEE 30th International Conference on Data Engineering\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 30th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2014.6816667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging metadata for identifying local, robust multi-variate temporal (RMT) features
Many applications generate and/or consume multi-variate temporal data, yet experts often lack the means to adequately and systematically search for and interpret multi-variate observations. In this paper, we first observe that multi-variate time series often carry localized multi-variate temporal features that are robust against noise. We then argue that these multi-variate temporal features can be extracted by simultaneously considering, at multiple scales, temporal characteristics of the time-series along with external knowledge, including variate relationships, known a priori. Relying on these observations, we develop algorithms to detect robust multi-variate temporal (RMT) features which can be indexed for efficient and accurate retrieval and can be used for supporting analysis tasks, such as classification. Experiments confirm that the proposed RMT algorithm is highly effective and efficient in identifying robust multi-scale temporal features of multi-variate time series.