图的可视化规范邻接矩阵

Hongli Li, G. Grinstein, L. Costello
{"title":"图的可视化规范邻接矩阵","authors":"Hongli Li, G. Grinstein, L. Costello","doi":"10.1109/PACIFICVIS.2009.4906842","DOIUrl":null,"url":null,"abstract":"Graph data mining algorithms rely on graph canonical forms to compare different graph structures. These canonical form definitions depend on node and edge labels. In this paper, we introduce a unique canonical visual matrix representation that only depends on a graph's topological information, so that two structurally identical graphs will have exactly the same visual adjacency matrix representation. In this canonical matrix, nodes are ordered based on a Breadth-First Search spanning tree. Special rules and filters are designed to guarantee the uniqueness of an arrangement. Such a unique matrix representation provides persistence and a stability which can be used and harnessed in visualization, especially for data exploration and studies.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual canonical adjacency matrix for graphs\",\"authors\":\"Hongli Li, G. Grinstein, L. Costello\",\"doi\":\"10.1109/PACIFICVIS.2009.4906842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph data mining algorithms rely on graph canonical forms to compare different graph structures. These canonical form definitions depend on node and edge labels. In this paper, we introduce a unique canonical visual matrix representation that only depends on a graph's topological information, so that two structurally identical graphs will have exactly the same visual adjacency matrix representation. In this canonical matrix, nodes are ordered based on a Breadth-First Search spanning tree. Special rules and filters are designed to guarantee the uniqueness of an arrangement. Such a unique matrix representation provides persistence and a stability which can be used and harnessed in visualization, especially for data exploration and studies.\",\"PeriodicalId\":133992,\"journal\":{\"name\":\"2009 IEEE Pacific Visualization Symposium\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Pacific Visualization Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2009.4906842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图数据挖掘算法依靠图规范形式来比较不同的图结构。这些规范形式定义依赖于节点和边缘标签。在本文中,我们引入了一种仅依赖于图的拓扑信息的唯一规范视觉矩阵表示,使得两个结构相同的图具有完全相同的视觉邻接矩阵表示。在这个规范矩阵中,节点是基于广度优先搜索生成树进行排序的。设计了特殊的规则和过滤器来保证安排的唯一性。这种独特的矩阵表示提供了持久性和稳定性,可以在可视化中使用和利用,特别是在数据探索和研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A visual canonical adjacency matrix for graphs
Graph data mining algorithms rely on graph canonical forms to compare different graph structures. These canonical form definitions depend on node and edge labels. In this paper, we introduce a unique canonical visual matrix representation that only depends on a graph's topological information, so that two structurally identical graphs will have exactly the same visual adjacency matrix representation. In this canonical matrix, nodes are ordered based on a Breadth-First Search spanning tree. Special rules and filters are designed to guarantee the uniqueness of an arrangement. Such a unique matrix representation provides persistence and a stability which can be used and harnessed in visualization, especially for data exploration and studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信