《超级马里奥兄弟》比我们想象的要难/简单

E. Demaine, G. Viglietta, A. Williams
{"title":"《超级马里奥兄弟》比我们想象的要难/简单","authors":"E. Demaine, G. Viglietta, A. Williams","doi":"10.4230/LIPIcs.FUN.2016.13","DOIUrl":null,"url":null,"abstract":"Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the complexity of the less general case where the screen size is constant, the number of on-screen sprites is constant, and the game engine forgets the state of everything substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the other hand, if levels can be represented using run-length encoding, then the problem is weakly NP-hard (even if levels have only constant height, as in the video games). All of our hardness proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness proof.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Super Mario Bros. is Harder/Easier Than We Thought\",\"authors\":\"E. Demaine, G. Viglietta, A. Williams\",\"doi\":\"10.4230/LIPIcs.FUN.2016.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the complexity of the less general case where the screen size is constant, the number of on-screen sprites is constant, and the game engine forgets the state of everything substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the other hand, if levels can be represented using run-length encoding, then the problem is weakly NP-hard (even if levels have only constant height, as in the video games). All of our hardness proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness proof.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2016.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

马里奥回来了!在这个续集中,我们证明了解决超级马里奥兄弟的一个广义关卡是pspace完全的,加强了之前的np -硬度结果(FUN 2014)。我们的pspace -硬度和之前的np -硬度都使用了任意维度的关卡,并且需要任意大的屏幕或能够记住屏幕外精灵状态的游戏引擎。我们还分析了屏幕尺寸不变,屏幕上精灵数量不变,游戏引擎忘记屏幕外所有东西的状态的不太常见情况的复杂性,就像大多数(如果不是全部的话)《超级马里奥兄弟》电子游戏。在这种情况下,我们证明了游戏是在多项式时间内可解的,假设关卡是显式编码的;另一方面,如果关卡可以使用运行长度编码来表示,那么这个问题就是弱np困难(即使关卡只有恒定的高度,就像电子游戏一样)。与之前的np硬度证明不同,我们所有的硬度证明也适用于《超级马里奥兄弟》中的已知故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super Mario Bros. is Harder/Easier Than We Thought
Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the complexity of the less general case where the screen size is constant, the number of on-screen sprites is constant, and the game engine forgets the state of everything substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the other hand, if levels can be represented using run-length encoding, then the problem is weakly NP-hard (even if levels have only constant height, as in the video games). All of our hardness proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信