学习金融时间序列预测证券交易市场

R. Rosas-Romero, Juan-Pablo Medina-Ochoa
{"title":"学习金融时间序列预测证券交易市场","authors":"R. Rosas-Romero, Juan-Pablo Medina-Ochoa","doi":"10.29007/MH4M","DOIUrl":null,"url":null,"abstract":"This paper presents the extension and application of three predictive models to time series within the financial sector, specifically data from 75 companies on the Mexican stock exchange market. A tool, which generates awareness of the potential benefits obtained from using formal financial services, would encourage more participation in a formal system. The three statistical models used for prediction of financial time series are a regression model, multi-layer perceptron with linear activation function at the output, and a Hidden Markov Model. Experiments were conducted by finding the optimal set of parameters for each predicting model while applying a model to 75 companies. Theory, issues, challenges and results related to the application of artificial predicting systems to financial time series, and performance of the methods are presented.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Financial Time Series for Prediction of the Stock Exchange Market\",\"authors\":\"R. Rosas-Romero, Juan-Pablo Medina-Ochoa\",\"doi\":\"10.29007/MH4M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the extension and application of three predictive models to time series within the financial sector, specifically data from 75 companies on the Mexican stock exchange market. A tool, which generates awareness of the potential benefits obtained from using formal financial services, would encourage more participation in a formal system. The three statistical models used for prediction of financial time series are a regression model, multi-layer perceptron with linear activation function at the output, and a Hidden Markov Model. Experiments were conducted by finding the optimal set of parameters for each predicting model while applying a model to 75 companies. Theory, issues, challenges and results related to the application of artificial predicting systems to financial time series, and performance of the methods are presented.\",\"PeriodicalId\":264035,\"journal\":{\"name\":\"International Conference on Computers and Their Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/MH4M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/MH4M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文以墨西哥证券交易所市场上75家公司的数据为例,介绍了三种预测模型在金融部门时间序列中的推广和应用。一种使人们认识到使用正规金融服务可能带来的好处的工具将鼓励更多地参与正规系统。用于金融时间序列预测的三种统计模型分别是回归模型、输出具有线性激活函数的多层感知器和隐马尔可夫模型。通过对75家公司的模型应用,找到了每个预测模型的最优参数集,进行了实验。介绍了人工预测系统在金融时间序列中的应用的理论、问题、挑战和结果,以及这些方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Financial Time Series for Prediction of the Stock Exchange Market
This paper presents the extension and application of three predictive models to time series within the financial sector, specifically data from 75 companies on the Mexican stock exchange market. A tool, which generates awareness of the potential benefits obtained from using formal financial services, would encourage more participation in a formal system. The three statistical models used for prediction of financial time series are a regression model, multi-layer perceptron with linear activation function at the output, and a Hidden Markov Model. Experiments were conducted by finding the optimal set of parameters for each predicting model while applying a model to 75 companies. Theory, issues, challenges and results related to the application of artificial predicting systems to financial time series, and performance of the methods are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信