{"title":"具有多相平衡开关的可重构斐波那契开关电容变换器的分析","authors":"A. Junussov, A. Ruderman","doi":"10.1109/POWERENG.2015.7266312","DOIUrl":null,"url":null,"abstract":"This paper investigates into enriching a (step-down) classic Fibonacci switched capacitor converter voltage target ratios set by applying a multiphase switching. Simple theoretical closed-form expressions for equivalent output resistances are obtained using charge flow balance analysis that also provides a useful insight into switched capacitor and output voltage ripples. It is shown that employing a balanced multiphase switching allows for essential switched capacitor and peak-to-peak output voltage ripple (or, alternatively, output filter capacitance) reduction.","PeriodicalId":334135,"journal":{"name":"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Analysis of a reconfigurable Fibonacci switched capacitor converter with a multiphase balanced switching\",\"authors\":\"A. Junussov, A. Ruderman\",\"doi\":\"10.1109/POWERENG.2015.7266312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates into enriching a (step-down) classic Fibonacci switched capacitor converter voltage target ratios set by applying a multiphase switching. Simple theoretical closed-form expressions for equivalent output resistances are obtained using charge flow balance analysis that also provides a useful insight into switched capacitor and output voltage ripples. It is shown that employing a balanced multiphase switching allows for essential switched capacitor and peak-to-peak output voltage ripple (or, alternatively, output filter capacitance) reduction.\",\"PeriodicalId\":334135,\"journal\":{\"name\":\"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERENG.2015.7266312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERENG.2015.7266312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of a reconfigurable Fibonacci switched capacitor converter with a multiphase balanced switching
This paper investigates into enriching a (step-down) classic Fibonacci switched capacitor converter voltage target ratios set by applying a multiphase switching. Simple theoretical closed-form expressions for equivalent output resistances are obtained using charge flow balance analysis that also provides a useful insight into switched capacitor and output voltage ripples. It is shown that employing a balanced multiphase switching allows for essential switched capacitor and peak-to-peak output voltage ripple (or, alternatively, output filter capacitance) reduction.