基于任务的可重复使用运载火箭建模与轨迹可视化时序仿真

Lâle Evrim Briese
{"title":"基于任务的可重复使用运载火箭建模与轨迹可视化时序仿真","authors":"Lâle Evrim Briese","doi":"10.3384/ECP18148230","DOIUrl":null,"url":null,"abstract":"The multibody modeling and visualization of reusable launch vehicles is a challenging task due to their variable structure regarding component separation and engine cutoffs during ascent and descent. However, the number of states within a MODELICA-based multibody model has to remain constant during a simulation. Therefore, the variable structure of launch vehicle models is often considered by using time- and state-dependent conditional statements and separation components. Such an approach can lead to a higher number of equations in the model and to a higher model complexity, respectively. In this paper, a mission-dependent sequential simulation approach for the modeling and trajectory visualization of launch vehicle systems is introduced. Here, the system is divided into characteristic phases, which are modeled with the DLR LauncherApplications Library capitalizing its modular, reusable and user-friendly structure to maintain compatibility between phases and to decrease the overall model complexity and the number of equations.","PeriodicalId":378465,"journal":{"name":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mission-Dependent Sequential Simulation for Modeling and Trajectory Visualization of Reusable Launch Vehicles\",\"authors\":\"Lâle Evrim Briese\",\"doi\":\"10.3384/ECP18148230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multibody modeling and visualization of reusable launch vehicles is a challenging task due to their variable structure regarding component separation and engine cutoffs during ascent and descent. However, the number of states within a MODELICA-based multibody model has to remain constant during a simulation. Therefore, the variable structure of launch vehicle models is often considered by using time- and state-dependent conditional statements and separation components. Such an approach can lead to a higher number of equations in the model and to a higher model complexity, respectively. In this paper, a mission-dependent sequential simulation approach for the modeling and trajectory visualization of launch vehicle systems is introduced. Here, the system is divided into characteristic phases, which are modeled with the DLR LauncherApplications Library capitalizing its modular, reusable and user-friendly structure to maintain compatibility between phases and to decrease the overall model complexity and the number of equations.\",\"PeriodicalId\":378465,\"journal\":{\"name\":\"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP18148230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18148230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可重复使用运载火箭的多体建模和可视化是一项具有挑战性的任务,因为它具有部件分离和发动机在上升和下降过程中关闭的可变结构。然而,在模拟过程中,基于modelica的多体模型中的状态数必须保持不变。因此,运载火箭模型的变结构通常采用依赖于时间和状态的条件语句和分离组件来考虑。这种方法会导致模型中方程的数量增加,模型的复杂性也会增加。本文介绍了一种用于运载火箭系统建模和轨迹可视化的任务相关序列仿真方法。在这里,将系统划分为特征阶段,并使用DLR LauncherApplications Library进行建模,利用其模块化、可重用和用户友好的结构来保持阶段之间的兼容性,并降低整体模型的复杂性和方程的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mission-Dependent Sequential Simulation for Modeling and Trajectory Visualization of Reusable Launch Vehicles
The multibody modeling and visualization of reusable launch vehicles is a challenging task due to their variable structure regarding component separation and engine cutoffs during ascent and descent. However, the number of states within a MODELICA-based multibody model has to remain constant during a simulation. Therefore, the variable structure of launch vehicle models is often considered by using time- and state-dependent conditional statements and separation components. Such an approach can lead to a higher number of equations in the model and to a higher model complexity, respectively. In this paper, a mission-dependent sequential simulation approach for the modeling and trajectory visualization of launch vehicle systems is introduced. Here, the system is divided into characteristic phases, which are modeled with the DLR LauncherApplications Library capitalizing its modular, reusable and user-friendly structure to maintain compatibility between phases and to decrease the overall model complexity and the number of equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信