用激光闪光法测量两层陶瓷的热扩散系数

M. Akoshima, Mitsue Ogawa, T. Baba, M. Mizuno
{"title":"用激光闪光法测量两层陶瓷的热扩散系数","authors":"M. Akoshima, Mitsue Ogawa, T. Baba, M. Mizuno","doi":"10.7791/JHTS.34.227","DOIUrl":null,"url":null,"abstract":"Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.","PeriodicalId":113412,"journal":{"name":"Journal of High Temperature Society","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn\",\"authors\":\"M. Akoshima, Mitsue Ogawa, T. Baba, M. Mizuno\",\"doi\":\"10.7791/JHTS.34.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.\",\"PeriodicalId\":113412,\"journal\":{\"name\":\"Journal of High Temperature Society\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Temperature Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7791/JHTS.34.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Temperature Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7791/JHTS.34.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于陶瓷的热障涂层用于燃气轮机的隔热和耐磨屏蔽。对涂层的热物理性能,如导热性、热扩散率和热容等进行评价是非常必要的。由于涂层附着在基材上,因此不容易单独测量这些性能。激光闪蒸法是固体材料室温以上热扩散率测量中最常用的方法之一。用脉冲激光束加热板形试样表面,然后用红外辐射计观察后表面温度随时间的变化。激光闪光法是一种非接触、短时间测量方法。一般来说,用这种方法测量致密、均匀和稳定的固体的热扩散率。试样的热扩散率很容易测量,热扩散时间约为1 ms ~ 1 s,与试样厚度约为1 mm ~ 5 mm一致。另一方面,该方法可用于测量固体的比热容。它也被用来估计层状材料中未知层的热扩散系数。为了评估附着在基材上的涂层的热扩散率,我们开发了一种使用激光闪光法的测量程序。采用基于响应函数法的多层模型,根据观察到的两层样品的温度历史曲线,计算了涂层附着在基体上的热扩散系数。通过测量结果和仿真,验证了多层模型激光闪光测量的适用性。结果表明,利用多层模型对分层样品进行激光测量可以有效地估计样品中未知层的热扩散系数。我们还开发了两层陶瓷样品作为该方法的参考材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn
Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信