一个以任务为导向的对话机器人,使用长短期记忆和注意力学习泰语

Ramon Robloke, B. Kijsirikul
{"title":"一个以任务为导向的对话机器人,使用长短期记忆和注意力学习泰语","authors":"Ramon Robloke, B. Kijsirikul","doi":"10.1145/3373477.3373704","DOIUrl":null,"url":null,"abstract":"A task-oriented dialogue bot helps users achieve a predefined goal within a closed domain. A neural-network based dialogue bot tracks the user intention in each action, which can reach promising performance compared to a hand-crafted baseline [1] and has a more flexible conversational flow. One such end-to-end architecture is the Hybrid Code Networks (HCNs) [2]. It uses the simulated conversation of human-bot in the domain of restaurant booking to train an LSTM to track dialogue states and predict the next bot response. This research proposes a similar architecture to HCNs with the addition of attention to LSTM [3]. The best results are obtained by our model on both original and Thai translated versions of bAbI task 5.","PeriodicalId":300431,"journal":{"name":"Proceedings of the 1st International Conference on Advanced Information Science and System","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A task-oriented dialogue bot using long short-term memory with attention for Thai language\",\"authors\":\"Ramon Robloke, B. Kijsirikul\",\"doi\":\"10.1145/3373477.3373704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A task-oriented dialogue bot helps users achieve a predefined goal within a closed domain. A neural-network based dialogue bot tracks the user intention in each action, which can reach promising performance compared to a hand-crafted baseline [1] and has a more flexible conversational flow. One such end-to-end architecture is the Hybrid Code Networks (HCNs) [2]. It uses the simulated conversation of human-bot in the domain of restaurant booking to train an LSTM to track dialogue states and predict the next bot response. This research proposes a similar architecture to HCNs with the addition of attention to LSTM [3]. The best results are obtained by our model on both original and Thai translated versions of bAbI task 5.\",\"PeriodicalId\":300431,\"journal\":{\"name\":\"Proceedings of the 1st International Conference on Advanced Information Science and System\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373477.3373704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373477.3373704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面向任务的对话机器人可以帮助用户在封闭的域中实现预定义的目标。基于神经网络的对话机器人跟踪每个动作中的用户意图,与手工制作的基线相比[1],它可以达到令人满意的性能,并且具有更灵活的会话流程。一种这样的端到端架构是混合代码网络(HCNs)[2]。它使用在餐厅预订领域的模拟人机对话来训练LSTM来跟踪对话状态并预测机器人的下一个反应。本研究提出了一个类似于hcn的架构,并增加了对LSTM的关注[3]。我们的模型在bAbI task 5的原始版本和泰语翻译版本上都获得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A task-oriented dialogue bot using long short-term memory with attention for Thai language
A task-oriented dialogue bot helps users achieve a predefined goal within a closed domain. A neural-network based dialogue bot tracks the user intention in each action, which can reach promising performance compared to a hand-crafted baseline [1] and has a more flexible conversational flow. One such end-to-end architecture is the Hybrid Code Networks (HCNs) [2]. It uses the simulated conversation of human-bot in the domain of restaurant booking to train an LSTM to track dialogue states and predict the next bot response. This research proposes a similar architecture to HCNs with the addition of attention to LSTM [3]. The best results are obtained by our model on both original and Thai translated versions of bAbI task 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信