一种处理海量车辆交通数据的体系结构

Simon Kwoczek, S. Martino, T. Rustemeyer, W. Nejdl
{"title":"一种处理海量车辆交通数据的体系结构","authors":"Simon Kwoczek, S. Martino, T. Rustemeyer, W. Nejdl","doi":"10.1109/3PGCIC.2015.124","DOIUrl":null,"url":null,"abstract":"Fostered by the \"big data\" hype in mobility, many research efforts have been aimed at improving techniques to model vehicular traffic patterns for mobility prediction. Nevertheless, from a practical stance, the industry still faces many technological challenges in bringing solutions on the market. Especially the scalability and performance of such systems raise major concerns, given the amount of spatio-temporal data to be processed. The common approach in dealing with these issues is to introduce constraints and/or simplifications on both the spatial component of the data and on the employed algorithms, leading to results that are somehow limited. To overcome these issues, in this paper we report on our experiences and our approaches in providing a solution that meets industrial needs with the aim to leverage the computational and storage capabilities of the Cloud to handle massive dataset for providing vehicular traffic predictions. In particular, we present an approach to deal with real-world datasets to facilitate the knowledge discovery process from this data while matching the business constraints given by the industrial use case.","PeriodicalId":395401,"journal":{"name":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Architecture to Process Massive Vehicular Traffic Data\",\"authors\":\"Simon Kwoczek, S. Martino, T. Rustemeyer, W. Nejdl\",\"doi\":\"10.1109/3PGCIC.2015.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fostered by the \\\"big data\\\" hype in mobility, many research efforts have been aimed at improving techniques to model vehicular traffic patterns for mobility prediction. Nevertheless, from a practical stance, the industry still faces many technological challenges in bringing solutions on the market. Especially the scalability and performance of such systems raise major concerns, given the amount of spatio-temporal data to be processed. The common approach in dealing with these issues is to introduce constraints and/or simplifications on both the spatial component of the data and on the employed algorithms, leading to results that are somehow limited. To overcome these issues, in this paper we report on our experiences and our approaches in providing a solution that meets industrial needs with the aim to leverage the computational and storage capabilities of the Cloud to handle massive dataset for providing vehicular traffic predictions. In particular, we present an approach to deal with real-world datasets to facilitate the knowledge discovery process from this data while matching the business constraints given by the industrial use case.\",\"PeriodicalId\":395401,\"journal\":{\"name\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2015.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2015.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在交通领域的“大数据”热潮的推动下,许多研究都致力于改进技术,为交通预测建立车辆交通模式模型。然而,从实际角度来看,该行业在将解决方案推向市场方面仍面临许多技术挑战。特别是考虑到要处理的时空数据量,此类系统的可伸缩性和性能引起了主要关注。处理这些问题的常见方法是在数据的空间组件和所使用的算法上引入约束和/或简化,从而导致某种程度上有限的结果。为了克服这些问题,在本文中,我们报告了我们在提供满足工业需求的解决方案方面的经验和方法,目的是利用云的计算和存储能力来处理大量数据集,以提供车辆交通预测。特别是,我们提出了一种处理真实世界数据集的方法,以促进从这些数据中发现知识的过程,同时匹配工业用例给出的业务约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architecture to Process Massive Vehicular Traffic Data
Fostered by the "big data" hype in mobility, many research efforts have been aimed at improving techniques to model vehicular traffic patterns for mobility prediction. Nevertheless, from a practical stance, the industry still faces many technological challenges in bringing solutions on the market. Especially the scalability and performance of such systems raise major concerns, given the amount of spatio-temporal data to be processed. The common approach in dealing with these issues is to introduce constraints and/or simplifications on both the spatial component of the data and on the employed algorithms, leading to results that are somehow limited. To overcome these issues, in this paper we report on our experiences and our approaches in providing a solution that meets industrial needs with the aim to leverage the computational and storage capabilities of the Cloud to handle massive dataset for providing vehicular traffic predictions. In particular, we present an approach to deal with real-world datasets to facilitate the knowledge discovery process from this data while matching the business constraints given by the industrial use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信