用于成本敏感数据挖掘的完全分布式框架

Wei Fan, Haixun Wang, Philip S. Yu, S. Stolfo
{"title":"用于成本敏感数据挖掘的完全分布式框架","authors":"Wei Fan, Haixun Wang, Philip S. Yu, S. Stolfo","doi":"10.1109/ICDCS.2002.1022284","DOIUrl":null,"url":null,"abstract":"We propose a fully distributed system (as compared to centralized and partially distributed systems) for cost-sensitive data mining. Experimental results have shown that this approach achieves higher accuracy than both the centralized and partially distributed learning methods, however, it incurs much less training time, neither communication nor computation overhead.","PeriodicalId":186210,"journal":{"name":"Proceedings 22nd International Conference on Distributed Computing Systems","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A fully distributed framework for cost-sensitive data mining\",\"authors\":\"Wei Fan, Haixun Wang, Philip S. Yu, S. Stolfo\",\"doi\":\"10.1109/ICDCS.2002.1022284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fully distributed system (as compared to centralized and partially distributed systems) for cost-sensitive data mining. Experimental results have shown that this approach achieves higher accuracy than both the centralized and partially distributed learning methods, however, it incurs much less training time, neither communication nor computation overhead.\",\"PeriodicalId\":186210,\"journal\":{\"name\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2002.1022284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 22nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2002.1022284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一个完全分布式的系统(与集中式和部分分布式系统相比),用于成本敏感的数据挖掘。实验结果表明,该方法比集中式学习方法和部分分布式学习方法都具有更高的学习精度,而且训练时间少,既不需要通信开销,也不需要计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fully distributed framework for cost-sensitive data mining
We propose a fully distributed system (as compared to centralized and partially distributed systems) for cost-sensitive data mining. Experimental results have shown that this approach achieves higher accuracy than both the centralized and partially distributed learning methods, however, it incurs much less training time, neither communication nor computation overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信