稀疏分量分析的顺序方法

Daniel V. Smith, J. Lukasiak, I. Burnett
{"title":"稀疏分量分析的顺序方法","authors":"Daniel V. Smith, J. Lukasiak, I. Burnett","doi":"10.1109/MMSP.2005.248603","DOIUrl":null,"url":null,"abstract":"A sequential approach to sparse component analysis (SeqTIF) is proposed in this paper. Although SeqTIF employs the estimation process of the simultaneous TIFROM algorithm, a source cancellation and deflation technique are also incorporated to sequentially estimate speech signals in the mixture. Results indicate that SeqTIF's separation performance shows a clear improvement upon the simultaneous TIFROM approach, due to the less restrictive assumptions it places upon the signals in the mixture. In particular, the analysis indicates SeqTIF's data efficiency is high, enabling the sequential approach to track a time-varying mixture with much greater accuracy than the simultaneous algorithm. Furthermore, SeqTIF is a more flexible approach, free from the constraints that a simultaneous approach places upon the mixing system","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Sequential Approach to Sparse Component Analysis\",\"authors\":\"Daniel V. Smith, J. Lukasiak, I. Burnett\",\"doi\":\"10.1109/MMSP.2005.248603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequential approach to sparse component analysis (SeqTIF) is proposed in this paper. Although SeqTIF employs the estimation process of the simultaneous TIFROM algorithm, a source cancellation and deflation technique are also incorporated to sequentially estimate speech signals in the mixture. Results indicate that SeqTIF's separation performance shows a clear improvement upon the simultaneous TIFROM approach, due to the less restrictive assumptions it places upon the signals in the mixture. In particular, the analysis indicates SeqTIF's data efficiency is high, enabling the sequential approach to track a time-varying mixture with much greater accuracy than the simultaneous algorithm. Furthermore, SeqTIF is a more flexible approach, free from the constraints that a simultaneous approach places upon the mixing system\",\"PeriodicalId\":191719,\"journal\":{\"name\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2005.248603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种序列稀疏分量分析方法(SeqTIF)。虽然SeqTIF采用了同步TIFROM算法的估计过程,但也采用了源对消和压缩技术来对混合语音信号进行顺序估计。结果表明,SeqTIF的分离性能明显优于同步TIFROM方法,因为它对混合物中的信号的假设限制较少。特别是,分析表明SeqTIF的数据效率很高,使得顺序方法能够以比同步算法更高的精度跟踪时变混合物。此外,SeqTIF是一种更灵活的方法,不受同步方法对混合系统的限制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Approach to Sparse Component Analysis
A sequential approach to sparse component analysis (SeqTIF) is proposed in this paper. Although SeqTIF employs the estimation process of the simultaneous TIFROM algorithm, a source cancellation and deflation technique are also incorporated to sequentially estimate speech signals in the mixture. Results indicate that SeqTIF's separation performance shows a clear improvement upon the simultaneous TIFROM approach, due to the less restrictive assumptions it places upon the signals in the mixture. In particular, the analysis indicates SeqTIF's data efficiency is high, enabling the sequential approach to track a time-varying mixture with much greater accuracy than the simultaneous algorithm. Furthermore, SeqTIF is a more flexible approach, free from the constraints that a simultaneous approach places upon the mixing system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信