脊柱侧凸Cobb角自动识别的深度学习方法

R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro
{"title":"脊柱侧凸Cobb角自动识别的深度学习方法","authors":"R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro","doi":"10.1109/aiiot54504.2022.9817290","DOIUrl":null,"url":null,"abstract":"Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification\",\"authors\":\"R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro\",\"doi\":\"10.1109/aiiot54504.2022.9817290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

高效、可靠的医学图像分析在现代医疗环境中不可或缺。仅凭图像进行诊断和评价的传统方法是复杂的。由于专家的经验和专业知识各不相同,往往会导致主观性。利用卷积神经网络,我们提出了一个端到端自动测量Cobb角的管道,以确定脊柱侧凸的严重程度。结果表明,基于Dice和Jaccard相似系数的残差U-Net结构能提供92.95%的椎骨平均分割精度。此外,医生测量和我们的机器驱动方法之间的比较基准产生了1.57度的可接受的平均偏差和0.9028的t检验p值,表明没有显著差异。这项研究有可能帮助医生及时评估脊柱侧凸的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification
Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信