{"title":"磷化铟空间太阳能电池制备技术综述","authors":"M. Spitzer, B. Dingle, J. Dingle, R. Morrison","doi":"10.1109/PVSC.1990.111617","DOIUrl":null,"url":null,"abstract":"A review of the status of InP cell efficiency and of approaches to the reduction of cell cost is presented. The use of heteroepitaxial techniques such as InP-on-GaAs and InP-on-Si is discussed along with the use of chemical and mechanical techniques for removal and recovery of the substrate. The efficiency ultimately obtainable with designs made possible by such an approach is calculated.<<ETX>>","PeriodicalId":211778,"journal":{"name":"IEEE Conference on Photovoltaic Specialists","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A review of indium phosphide space solar cell fabrication technology\",\"authors\":\"M. Spitzer, B. Dingle, J. Dingle, R. Morrison\",\"doi\":\"10.1109/PVSC.1990.111617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review of the status of InP cell efficiency and of approaches to the reduction of cell cost is presented. The use of heteroepitaxial techniques such as InP-on-GaAs and InP-on-Si is discussed along with the use of chemical and mechanical techniques for removal and recovery of the substrate. The efficiency ultimately obtainable with designs made possible by such an approach is calculated.<<ETX>>\",\"PeriodicalId\":211778,\"journal\":{\"name\":\"IEEE Conference on Photovoltaic Specialists\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Photovoltaic Specialists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1990.111617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Photovoltaic Specialists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1990.111617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of indium phosphide space solar cell fabrication technology
A review of the status of InP cell efficiency and of approaches to the reduction of cell cost is presented. The use of heteroepitaxial techniques such as InP-on-GaAs and InP-on-Si is discussed along with the use of chemical and mechanical techniques for removal and recovery of the substrate. The efficiency ultimately obtainable with designs made possible by such an approach is calculated.<>