局部优势包括moea中解决方案优势区域的控制

Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka
{"title":"局部优势包括moea中解决方案优势区域的控制","authors":"Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka","doi":"10.1109/MCDM.2007.369106","DOIUrl":null,"url":null,"abstract":"Local dominance has been shown to improve significantly the overall performance of multiobjective evolutionary algorithms (MOEAs) on combinatorial optimization problems. This work proposes the control of dominance area of solutions in local dominance MOEAs to enhance Pareto selection aiming to find solutions with high convergence and diversity properties. We control the expansion or contraction of the dominance area of solutions and analyze its effects on the search performance of a local dominance MOEA using 0/1 multiobjective knapsack problems. We show that convergence of the algorithm can be significantly improved while keeping a good distribution of solutions along the whole true Pareto front by using local dominance with expansion of dominance area of solutions. We also show that by controlling the dominance area of solutions dominance can be applied within very small neighborhoods, which reduces significantly the computational cost of the local dominance MOEA","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Local Dominance Including Control of Dominance Area of Solutions in MOEAs\",\"authors\":\"Hiroyuki Sato, H. Aguirre, Kiyoshi Tanaka\",\"doi\":\"10.1109/MCDM.2007.369106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local dominance has been shown to improve significantly the overall performance of multiobjective evolutionary algorithms (MOEAs) on combinatorial optimization problems. This work proposes the control of dominance area of solutions in local dominance MOEAs to enhance Pareto selection aiming to find solutions with high convergence and diversity properties. We control the expansion or contraction of the dominance area of solutions and analyze its effects on the search performance of a local dominance MOEA using 0/1 multiobjective knapsack problems. We show that convergence of the algorithm can be significantly improved while keeping a good distribution of solutions along the whole true Pareto front by using local dominance with expansion of dominance area of solutions. We also show that by controlling the dominance area of solutions dominance can be applied within very small neighborhoods, which reduces significantly the computational cost of the local dominance MOEA\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

局部优势已被证明可以显著提高多目标进化算法在组合优化问题上的整体性能。本文提出控制局部优势moea中解的优势区域以增强Pareto选择,以寻找具有高收敛性和多样性的解。我们利用0/1多目标背包问题控制解的优势区域的扩张或收缩,并分析其对局部优势MOEA搜索性能的影响。结果表明,利用局部优势和优势区域的扩展,可以在保持整个真Pareto前沿解的良好分布的同时,显著提高算法的收敛性。我们还表明,通过控制解决方案的优势区域,优势可以应用于非常小的邻域,这大大降低了局部优势MOEA的计算成本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Dominance Including Control of Dominance Area of Solutions in MOEAs
Local dominance has been shown to improve significantly the overall performance of multiobjective evolutionary algorithms (MOEAs) on combinatorial optimization problems. This work proposes the control of dominance area of solutions in local dominance MOEAs to enhance Pareto selection aiming to find solutions with high convergence and diversity properties. We control the expansion or contraction of the dominance area of solutions and analyze its effects on the search performance of a local dominance MOEA using 0/1 multiobjective knapsack problems. We show that convergence of the algorithm can be significantly improved while keeping a good distribution of solutions along the whole true Pareto front by using local dominance with expansion of dominance area of solutions. We also show that by controlling the dominance area of solutions dominance can be applied within very small neighborhoods, which reduces significantly the computational cost of the local dominance MOEA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信